COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) 07 JUNE 2008

DURATION: 3 HOURS

MARKS: 140

INTERNAL EXAMINER: S.Pillay & Y. Aungumuthu.

EXTERNAL EXAMINER: Dr O. Narain.

PLEASE NOTE:

- 1. This paper consists of 15 pages, including this cover page. Check that you have them all.
- 2. Answer all questions and show working details.
- 3. Write your answers in the space provided. If the provided space is not enough, you can use the reverse side of the previous page, ie. opposite where you are working.
- 4. Write legibly in dark blue or black pen.
- 5. Write your student number in the space provided below.

STUDENT NUMBER:
STUDENT SIGNATURE:
SEAT NUMBER:

Question Number	1	2	3	4	5	6	7	8	Total
Total	18	25	15	14	15	21	10	22	140
Internal Marks	lw	LW	LW	LW					
External Marks									

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 2 OF 15

Question 1: (18 marks)

Circle only the letter that is next to the correct answer for each of the following:

1.1 Given $x - 2 \le 4 + 4x$ then:

A $x \le 2$

B $x \ge 2$

C $x \le -2$

(D) $x \ge -2$

1.2 Given the sequence (number pattern): 1;3;6;10;15;... The next number is

A 19

B 20

(C) 21

D 22

1.3 If 3 a = 5 b = 4 c and a, b and c are natural numbers, then

 $A \quad a > b > c.$

 $B \qquad b > c > a$

 $C \quad c > b > a$.

1.4 Which statement is false?

A A prime number has only two factors.

B The sum of odd numbers is even

C All irrational numbers are real numbers

D $\sqrt{2}\sqrt{18}$ is rational

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 3 OF 15

1.5 If $P = \{a, b, c, d\}$, then the number of sub-sets is:

В

D 32

1.6 If the line g(x) = 3 - 2x is reflected about the y axis then the new equation is:

A = x = 2y - 3

C y = 2x - 3

Question 2: (25 marks)

2.1 (a) Define a rational number.

11 Z divided by 2" A rational number/ can be expressed

I need.

In the firm P, P, 2 & Z, 2 + 0;

med viel. (2)

(b) Show that 1, 2 57575757 ... is a rational number.

(4)2 = 1.2575757... ... 0/1/1002 = 125.757575... 0/1/2 - 0: 992 = 124.5/

2 = 1245 which is of the form

990 of a rational number

1.25757... is rational.

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 4 OF 15

 $\sqrt{-2}$ $-\sqrt{2}$ π $\frac{0}{7}$ $\sqrt{121}$ 2.2 Given :

Draw a Venn- Diagram and show the above numbers in their correct places using the sets of Rational numbers and Irrational numbers.

(2)

2.3 Use the diagram below and illustrate $(A \cap B)'$

2.4 Show that the sum of three odd natural numbers is odd.

Note that 3 odd natural numbers be

2a+1, 2b+1 and 2c+1, a,b,c E. INo

2a+1+2b+1+2c+1 = 2a+2b+2c+3 = 2 (a+b+c+1)+1 which is of the form of an odd number. The sum of 3 odd natural numbers is odd. In

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 5 OF 15

2.5 Study the data in the table below and calculate the values of p and v.

(4)

12	p	0,15	100
0,6	2,4	48	ν

$$\frac{12 \times \frac{6}{10} = 7.2 \sqrt{2}}{\frac{15}{100} \times \frac{48}{1}} = \frac{15 \times 12}{25} = \frac{36}{5} = 7.2$$

$$P \times \frac{24}{10} = \frac{72}{10} \quad \text{and} \quad 100 \text{ v} = 7.2$$

$$P = 3 \sqrt{2}$$

2.6 A lift can safely carry 12 adults each with an average mass of 95 kg. How many teenagers with an average mass 65 kg can it safely carry?

as mass I no of people T (inverse proportion)

$$12 \times 95 = 65 \times x$$
 $x = \frac{12 \times 5 \times 19}{5 \times 13}$

Let the no of teenagers of average mass 65kg be x.

 $x = \frac{12 \times 5 \times 19}{5 \times 13}$
 $x = \frac{17.538}{4}$

We choose 17 people (toenagers) to safely be on the lift.

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 6 OF 15

Question 3:(15 marks)

3.1 Solve for t and illustrate your solution graphically.

3.2 Solve for d and illustrate your solution using interval notation.

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 7 OF 15

3.3 If
$$px + 2 < qx$$
 determine x .

$$px - qx < -2$$

$$x(p-q) < -2$$

$$if p-q > 0$$
 then $x < \frac{2}{p-q}$

$$0$$
 if $p-q < 0$ then $x > \frac{-2}{p-q}$

Question 4: (14 marks)

4.1 Determine the centre and the radius of the circle given the equation:

$$y^{2}+2y+x^{2}-4x=11.$$

$$\chi^{2}-4\chi + 4 + 4y^{2} + 2y + 1 = 11+5$$

$$(4)$$

$$(\chi-2)^{2} + (y+1)^{2} = 16$$

$$(2,-1)$$
and radius = 4 units

UNIVERSITY OF KWAZULU-NATAL

JUNE 2008 TEST

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 8 OF 15

4.2 a) Sketch the following:
$$f(x) = \frac{6}{x-2} + 1$$
 and $d(x) = -\sqrt{4-x^2}$.

(Make sure that you clearly show all intercepts and asymptotes.) (7)

4.2 b) Determine the inverse of $f(x) = \frac{6}{x-2} + 1$ i.e $f^{-1}(x)$.

Reflect
$$y = \frac{6}{\chi - 2} + 1$$
 about $y = \chi$ (3)
to get $\lambda = \frac{6}{y - 2} + 1$
 $\chi - 1 = \frac{6}{y - 2}$
 $y - 2 = \frac{6}{\chi - 1}$
 $y = \frac{6}{\chi - 1} + 2$

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 9 OF 15

QUESTION 5: (15 marks)

5.1 The table below represents a stage in a Gauss reduction calculation.

x	y	z	1	
2	3	1	4	
0	4	2	6	
0	0	-1	5	

Determine the value(s) of x, y and z.

(4)

$$-2 = 5$$
 $2 = -5$
 $4y + 2(-5) = 6$
 $4y = 16$
 $y = 4$

$$2x + 12 - 5 = 4$$

$$2x = -3$$

$$x = -1\frac{1}{2} \text{ or } -\frac{3\sqrt{2}}{2\sqrt{2}}$$
Solution = $\{(x, y, t) \in \mathbb{R}^3 : (-1\frac{1}{2}, +, -5)\}$

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 10 OF 15

5.2 Solve for p if

$$P = q + r = 1$$

$$q = 1 - t$$

$$Q = 1 - t$$

$$Q = 3 - t$$

5.3 A parabola h(x), has range $(-\infty, 1]$ and line of symmetry x = -2. If the parabola cuts the y – axis at -3, determine the equation of the parabola. (5)

Turning pt.
$$(-2,1)$$
 $y = a(x+2)^2 + 1$

Subst. (0_1-3)
 $-3 = a(0+2)^2 + 1$
 $a = -1$
 $y = -(x+2)^2 + 1$ is the required equation

UNIVERSITY OF KWAZULU-NATAL

JUNE 2008 TEST

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 11 OF 15 Question 6: (21 marks)

Given:
$$t(x) = \frac{-2}{\sqrt{6-4x}}$$
, $f(x) = -2x^2 + 5x + 3$.

and g(x) = 6 - 2x.

6.1 Determine the domain of
$$t$$
.

6.2 $6 - 4x > 0$

6.3 $4x$
 $\frac{1}{2} > x x \in \mathbb{R}$

6.2 Calculate:
$$(t \circ g)(2.5)$$
.
$$g(2.5) = 6 - 2(2.5) = 6 - 5 = 1$$

$$(tog)(2.5) = t(g(2.5)) = t(1) = \frac{-2}{\sqrt{6-4(1)}} = \frac{-2}{\sqrt{2}} = -\sqrt{2}$$

6.3 (a) Make neat sketch graphs of f and g below: (7) (Make sure that you clearly show all intercepts and relevant points.)

$$\mathcal{X} = \frac{-5}{-4} = 1\frac{1}{4} \text{ and } f(\frac{5}{4}) = \frac{-2}{1} \times \frac{25}{16} + \frac{25}{4} + 3$$

$$= \frac{-25 + 50 + 24}{8} \qquad (2x+1)(x-3) = 0$$

$$= \frac{49}{8}$$

$$= \frac{1}{4}$$

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 12 OF 15

- (b) Write down the range of f. (2) $y \le \frac{49}{8} / y \in \mathbb{R}$
- (c) Explain how you would use the graphs to solve the equation: (4)

$$2x^{2} + 3 = 7x.$$

$$-2x^{2} - 3 = -7x$$

$$-2x^{2} + 5x - 3 = -2x$$

$$-2x^{2} + 5x + 3 = -2x + 6$$

$$f(x) = g(x)$$

The x-co-ordinate of the point of intersection of the graphs of f and g represent the solution to $2x^2+3=7x$.

(d) Shade, on the graphs you sketched above, the region $\{(x,y)\in R^2:y\leq f(x)\}\cap\{(x,y)\in R^2:y\geq g(x)\}. \tag{2}$

QUESTION 7: (10 marks)

7.1 Jabu is 8 years younger than Nonhlanhla. Two years ago, Jabu's age was half of Nonhlanhla's age. Determine, by constructing suitable equation(s), Jabu's present age.

Next Jobu's present age be
$$x$$
 years x (4)

$$(x-2) = \frac{1}{2}(x+8-2)$$

$$2x-4 = x+6$$

$$x = 10$$
John is 10 years old.

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 13 OF 15

7.2 The distance between town A and town B is 800 km. Jabu leaves town A to go to town B, whilst at the same time, Cyril leaves town B to go town A. Jabu and Cyril travel along the same road and meet after 5 hours. If Jabu was travelling twice as fast as Cyril, determine, by constructing suitable equation(s), how fast each of them were travelling?

(6)

Let Cyril's average speed be x km/h /a

Jabu

Speed = 2x km/h

time = 5 h

distance = 10x km

distance = 5x km

Total distance = 800

10x + 5x = 800 %

16x = 800 : x = 53 $\frac{1}{3}$. Gril travelled at 53 $\frac{1}{3}$ km/h and Sabu at 106 $\frac{2}{3}$ km/h.

QUESTION 8: (22 marks)

8.1 In the diagram below, triangle ABC is right angled at B. DE is the diameter of the semi-circle. AC = 13 cm, BC = 5 cm, DE = 4 cm and DC = 2 cm.
Determine the perimeter of the shaded region. (5)
(Leave your answer in terms of π.)

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 14 OF 15

8.2 ACK represents a quarter circle with centre C. BCDE is a rectangle with CD = 4t mm and BC = t mm. BC : CK = 1 : 4. If the area of the shaded region equals $(16\pi - 16)$ mm² then determine t.

$$\frac{BC}{CK} = \frac{1}{4}$$

$$CK = 4t \text{ mm}$$

$$area of shaded region = \frac{1}{4}(\pi(4t^{3})^{2}) - t \times 4t$$

$$= 4\pi t^{2} - 4t^{2} \times 4t$$

$$= 4\pi t^{2} - 4t^{2} \times 4t$$

$$= 4(\pi t^{2} - t^{2}) = \frac{16(\pi - 1)}{4(\pi - 1)^{3/2}} + \frac{1}{4}(\pi - 1)^{3/2}$$

$$= \frac{16(\pi - 1)^{3/2}}{4(\pi - 1)^{3/2}} + \frac{1}{4}(\pi - 1)^{3/2}$$

8.3 A cylinder has radius 2 cm and height h cm. A cube, with edge 4 cm, has volume equal to 25% of the volume of the cylinder. Determine h. (5)

Volume of cube = 25% of volume of cylinder $64 \frac{1}{4} = \frac{1}{4} \frac{1}{4} \times \frac{1}{4} \times$

COURSE AND CODE: FOUNDATION MATHEMATICS (MATH 099) PAGE 15 OF 15

- A rectangular prism has length 5 cm, width 4 cm and height 6 cm. A triangular prism has an equilateral triangle as a base. The sides of the equilateral triangle are 8 cm.
 - a) Determine the total surface area of the rectangular prism.

 TSA of rect. prism = $2(5\times4) + 2(5\times6) + 2(4\times6)$ cm²

 = (40 + 60 + 48) cm²

 = 148 cm²

(5)

b) If the triangular prism has the same surface area as the rectangular prism then determine the height of the triangular prism.

$$h = \sqrt{8^2 - 4^2} \quad (\text{fythago-as})$$

$$h = \sqrt{48} \quad \text{cm}$$

$$TSAAA \text{ prism} = 2\left(\frac{1}{2} \times 8 \times \sqrt{48}\right) + 3\left(8 \times \text{height}\right)$$

$$148 = 8\sqrt{48} + 24 \times \text{height}$$

height = $\frac{148 - 8\sqrt{48}}{24}$ cm

height = $37 - 2\sqrt{48}$ cm