XT - MATHS Grade 11

Class:

Date:

Total Marks: 41

Name:

Question 1: True/False [2]

The graph of $y = \cos x$ is to be reflected in the *y*-axis. The equation of the new graph will be unchanged from the original.

Questions 2 to 3 refer to the following graphic

Subject: Trigonometry 2: Graphs

Question 2: True/False [2]

FALSE

Given graph: $y = \tan x$ and $y = \cos 2x$ for $x \in [0^\circ; 180^\circ]$

If the graphs were extended for $x \in [0^\circ; 360^\circ]$ the next point of intersection would be at $x = 208^\circ$.

TRUE

Mathematics - LO 2 : AS 2

Mathematics - LO 2 : AS 2

Question 4: True/False [2]

The function $y = a \tan bx$ is given with b > 0.

Mathematics - LO 2 : AS 2

If the lines $x = -30^{\circ}$ and $x = 30^{\circ}$ are asymptotes of this function, then the value of b will be $\frac{1}{3}$.

Question 5 refers to the following graphic

Figure 2: 11-0006

Question 5: Multiple Choice [2]

Three cosine graphs have been sketched for $-180^\circ \le x \le 180^\circ$. The graph with the greatest period is ...

Question 6 refers to the following graphic

Mathematics - LO 2 : AS 2

Question 6: Multiple Choice [3]

 $f: y = a \cos(\theta + b)$

Mathematics - LO 2 : AS 2

 $g: y = c \sin \theta$

The sketch graphs of the above equations are given for [-180°; 0°].

The values of a, b and c are therefore ...

Question 7: Multiple Choice [2]

<u>Given</u>: $y = \frac{12}{10} \sin 2x$ for $0^{\circ} \le x \le 90^{\circ}$

Mathematics - LO 2 : AS 2

The value of x when the maximum height achieved by the graph of this equation is ...

Question 8 refers to the following graphic

Question 8: Socrates [2]

<u>Given</u>: $y = \sin(x - 60^\circ)$ and $y = 0.5 + \cos x$ for $x \in [-120^\circ; 90^\circ]$

The interval of x for which $(\sin(x - 60^\circ))(0, 5 + \cos x) > 0$ is ...

[Give your answer in the form (a; b).]

Question 9: Socrates [2]

Mathematics - LO 2 : AS 2

Wiskunde - LU 2 : AS 2

If the graph of the equation $y = 2\cos(x + 30^\circ)$ is moved 30° right,

the new graph will be represented by the equation ...

Question 10: Socrates [2]

The graph of the equation $y = \cos(x + 45^\circ)$ is moved 30° to the right.

The new graph will then represent the equation ...

Question 11: Socrates [2]

The x-intercepts of the function $y = \cos(x - 60^\circ)$ with $-180^\circ \le x \le 180^\circ$ are ...

[Give the roots and separate them with a semi-colon, e.g. 45°; 60°.)

Question 12 refers to the following graphic

Question 12: Cloze [4]

Mathematics - LO 2 : AS 2

The graphs of $f(x) = 2 \sin x$ and $g(x) = \cos\left(\frac{1}{2}x\right)$ have been sketched for the interval $0^{\circ} \le x \le 360^{\circ}$.

The graphs intersect at A (29°; 0,96), B and C.

The coordinates of **B** are (Ans. 1). The coordinates of **C** are (Ans. 2).

1		2		
▶ (90°; 0)	▶ (180°; 0)		▶ (-29°; -0,96)	
▶ (331°; -0,96)	▶ (331°; 0,96)		▶ (299°; <i>−</i> 0,96)	
▶ 90°	▶180°			

Questions 13 to 14 refer to the following graphic

Question 13: Cloze [4]

Mathematics - LO 2 : AS 2

The graphs of $f(x) = \sin 2x$ and $g(x) = \cos (x - 45^\circ)$ have been sketched for the interval $-180^\circ \le x \le 180^\circ$.

The graphs intersect at A (165°; -0,5), B and C.

The coordinates of **B** are (Ans. 1). The coordinates of **C** are (Ans. 2).

1	2	
▶ (90°; 1)	▶ (45°; 1)	▶ (-75°; -0,5)
▶ (-120°; -0,5)	▶ (-165°; -0,5)	▶ (-155°; -0,5)
▶90°	▶45°	

Question 14: Cloze [4]

Mathematics - LO 2 : AS 2

The graphs of $f(x) = \sin 2x$ and $g(x) = \cos (x - 45^\circ)$ have been sketched for the interval $-180^\circ \le x \le 180^\circ$.

The graphs intersect at A, B (45°; 1) and C.

At **B** a common tangent can be drawn to both curves. The equation of the tangent is (Ans. 1). The *y*-coordinates of the endpoints of g(x) is (Ans. 2).

1		2	
x = 1	▶ <i>y</i> = 1		$y = 45^{\circ}$
$x = 45^{\circ}$	▶ -0,71		▶ 0,71
▶-0,5	▶ 0,5		

Question 15: Cloze [4]		Mathematics - LO 2 : AS 2
Given for $x \in [-180^\circ; 180^\circ]$:	$h(x)=\cos x-2$	
	$g(x) = \tan 3x$	
	$t(x) = \sin(x + 30^{\circ})$	
The period of g will then be (Ans. 1), while the maximum height of h is reached if $x = 0$	(Ans. 2).
If the graph of t is shifted (Ar	is. 3), the equation of t will change to $y = \cos x$.	

1		2	
3			
▶ 0°	▶ 60°		▶ 90°
▶ 120°	▶ 360°		▶ 60° to the left
▶ 60° to the right	▶120° to the left		▶120° to the right

15 Questions, 8 Pages