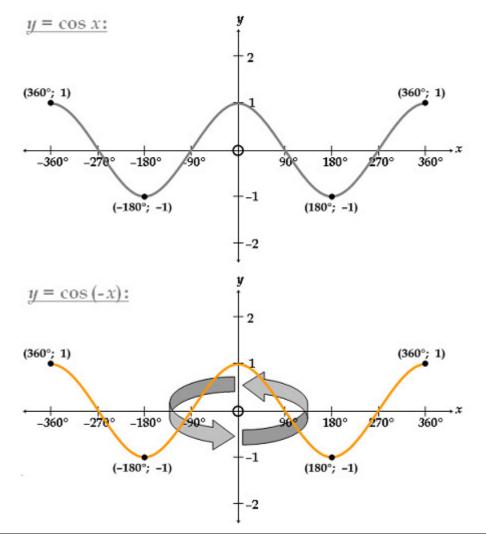
Subject: Trigonometry 2: Graphs Total Marks: 41

Date: 2010/06/29

2


2

4

1. TRUE

Explanation: A reflection in the *y*-axis means that *x* is replaced with -x.

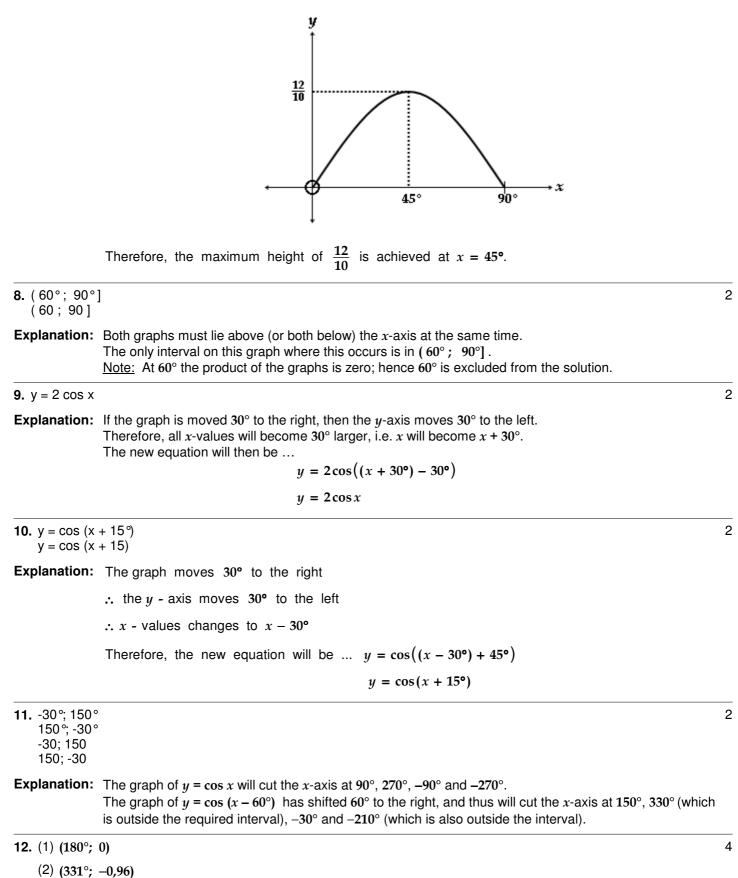
Thus $y = \cos x$ becomes $y = \cos (-x)$, but $\cos x = \cos (-x)$ as $y = \cos x$ is symmetrical about the y-axis.

2. TRUE

Explanation: The period of both graphs is 180°. This means that the same information is repeated every 180° earlier or after the part that has been drawn.

Thus the next point of intersection will be 180° after 28°, that is 208°.

3. A


Explanation: If the product of the two graphs is negative, the one graph must be positive and the other graph must be negative.

The values of *x* for which $\cos 2x = 0$:

 $2x = 90^{\circ}$ or $2x = 270^{\circ}$ [for the given interval] $x = 45^{\circ}$ $x = 135^{\circ}$

From the graph:

	for $x = 0^{\circ}$: $\tan x = 0$ and $\cos 2x$ positive
	for $0^{\circ} < x < 28^{\circ}$: both $\tan x$ and $\cos 2x$ positive
	for $x = 28^{\circ}$: both $\tan x$ and $\cos 2x$ positive
	for $28^\circ < x < 45^\circ$: both $\tan x$ and $\cos 2x$ positive
	for $x = 45^{\circ}$: tan x positive and $\cos 2x = 0$
	for $45^{\circ} < x < 90^{\circ}$: $\tan x$ positive and $\cos 2x$ negative
	$for x = 90^{\circ}$: $tan x$ does not exist
	for $90^{\circ} < x < 135^{\circ}$: both $\tan x$ and $\cos 2x$ negative
	for $x = 135^{\circ}$: tan x negative and $\cos 2x = 0$
	for $135^{\circ} < x < 180^{\circ}$: tan x negative and $\cos 2x$ positive
	for $x = 180^{\circ}$: $\tan x = 0$ and $\cos 2x$ positive
	Then $\tan x \cdot \cos 2x < 0$ for $45^\circ < x < 90^\circ$ and $135^\circ < x < 180^\circ$
	$\therefore \tan x \cdot \cos 2x < 0$ for (45°; 90°) and (135°; 180°)
4. FALSE	2
Explanation:	If the asymptotes are at $x = -30^{\circ}$ and $x = 30^{\circ}$, then the period of this function will be 60°. There will therefore be 3 'repeats' of the graph between 0° and 180°. Therefore, the value of <i>b</i> will be 3.
5. B	2
Explanation:	A has the greatest amplitude, but this is not asked. The first <i>x</i> -intercept of A is at $x = 90^{\circ}$; this means the period is 360°.
	B and C have the same amplitudes, even though C is a reflection about the <i>x</i> -axis. The first <i>x</i> -intercept of B is at $x = 135^{\circ}$; this means the period is 540°.
	The first x-intercept of C is at $x = 45^{\circ}$; this means the period is 180°.
	Thus the graph with the greatest period is B .
6. C	3
Explanation:	The minimum value of f is -1 , therefore the amplitude of this graph is 1. As f represents a cosine graph and the graph is in the same form as a 'normal' cosine graph, the value of a will be equal to 1.
	The graph of <i>f</i> has been moved 45° to the right [cos (-90°) = 0, but in this graph cos (-45°) = 0]. As the graph has been moved 45° to the right, the value of <i>b</i> will be equal to -45°.
	The maximum value of g is 2, therefore the amplitude of this graph is 2. As g represents a sine graph and the graph has been rotated around the x-axis, the value of c will be equal to -2 .
7. C	2
Explanation:	The value $\frac{12}{10}$ has no impact on where the turning points are, but only on the value of the turning points.
	The period of $y = \frac{12}{10} \sin 2x$ has been doubled, that is there is twice as much information recorded as the original graph.
	The graph of the equation $y = \frac{12}{10} \sin 2x$ for $0^\circ \le x \le 90^\circ$ is :
	Page 2

-/ (331 , -0,90)

Explanation: The coordinates of **B** are (180°; 0), the normal *x*-intercept for a sine function.

From symmetry, A is as far from the *y*-axis (29°) as C is from 360°. Thus the *x*-coordinate of C is $360^\circ - 29^\circ = 331^\circ$.

From symmetry, **A** is as far above the *x*-axis (0, 96) as C is below it. Thus the *y*-coordinate of C is -0, 96.

13. (1) (45°; 1)

(2) (-75°; -0,5)

Explanation: The coordinates of B are easily determined: (45°; 1)

This can be seen from either the fact that $(0^\circ; 0)$ from a basic cosine function has been moved 45° to the right; or from the fact that the period of the sine function has been halved; thus its maximum point $(90^\circ; 1)$ moves to $(45^\circ; 1)$.

From symmetry, A and C are symmetrical to each other by reflection about the line $x = 45^{\circ}$. Thus A is as far to the right of the line $x = 45^{\circ}$ [165° - 45° = 120°] as C is to its left. Thus the *x*-coordinate of C is 45° - 120° = -75°.

From symmetry, A and C are on the same horizontal line. Therefore, the *y*-coordinate of C is also -0.5.

14. (1) y = 1

(2) _0,71

Explanation: At B, a tangent will be horizontal. That means the gradient of the tangent will be zero. Therefore: m = 0The tangent will cut the *y*-axis at (0°; 1). Therefore: c = 1

Thus the equation of the tangent will be y = 1.

To determine the y-coordinates of the endpoints of g(x), substitute 180° or -180° into g(x):

 $g(180^{\circ}) = \cos(180^{\circ} - 45^{\circ})$ OR $g(-180^{\circ}) = \cos(-180^{\circ} - 45^{\circ})$ = -0,71 = -0,71

15. (1) 60°

(2) 0°

(3) 60° to the left

Explanation: (1) The period of $y = \tan x$ is 180°, therefore the period of $y = \tan 3x$ will be 180° ÷ 3 = 60°.

- (2) The maximum height of y = cos x is 1, which occurs at x = 0°. Therefore, the maximum height of y = cos x - 2 is 1 - 2 = -1, which still occurs at x = 0°.
- (3) $y = \sin A \operatorname{can} \operatorname{only} \operatorname{become} y = \cos A$ if $\sin A$ is changed to either $\sin (90^\circ A)$ or $\sin (90^\circ + A)$. If $y = \sin(x + 30^\circ)$ is changed to $y = \sin(x + 90^\circ)$, the equation will change to $y = \cos x$. Therefore ... $y = \sin(x + 30^\circ + 60^\circ)$

This means that the y-axis must be moved 60° to the right which means that the graph must be moved 60° to the left.

15 Questions, 4 Pages

4

4