Name: \qquad Class: \qquad
Subject: Series and Sequences 1: Arithmetic
Date: \qquad
Total Marks: 84

Question 1: True/False [10]

$11+13+15+\ldots$
A minimum number of ten terms of this series will give a sum which is larger than 200.

TRUE

FALSE

Question 2: True/False [4]

Mathematics - LO 1 : AS 3
If 13 and 19 are the first two terms of an arithmetic progression, then the value of the thirty-fifth term of this sequence will be 219.

TRUE

FALSE

Question 3: Multiple Choice [6]
Mathematics - LO 1 : AS 3
$4+9+14+\ldots+54$
The sum of this series is equal to ...

Question 4: Multiple Choice [8]
Mathematics - LO 1 : AS 3
The sum of all the multiples of 3 between 22 and 121 is equal to ...
A 31

Which of the following progressions represent arithmetic sequences?
A: 9 ; 7 ; 5 ; 3 ; ...

B: 3; 9; 27; ...

C: $(x+4) ;(3 x+3) ;(5 x+2) ; \ldots$
A A only
B B only
C C only
D A and C
E A and B

Question 6: Socrates [8]
If $\sum_{k=1}^{n}(2 k-1)=144$, then $n=\ldots$
Type the number only.
\square

Question 7: Socrates [4]

Mathematics - LO 1 : AS 3
Given: 11; 6; 1;...
The sum of the first nineteen terms of this sequence will be equal to ... Type the number only.

Question 8: Socrates [2]

The arithmetic mean of 16 and 25 is ..
Give your answer in decimal form.

Consider the recursive number pattern: $\boldsymbol{T}_{\boldsymbol{n}}=\boldsymbol{T}_{\boldsymbol{n - 1}}+\boldsymbol{T}_{\boldsymbol{n - 2}}, \quad \boldsymbol{T}_{\boldsymbol{1}}=\mathbf{1}, \quad \boldsymbol{T}_{\mathbf{2}}=\mathbf{3}$
The first six terms of this pattern are (ans 1).
The number pattern (ans 2) an arithmetic pattern.
The name of the particular pattern generated is the (ans 3) series.

1			2	
-74, 102		-74, 104		- 70, 92
- linear		- quadratic		- cubic
- $T_{n}=T_{n-1}+4 n, T_{1}=-6$		- $T_{n}=2 n^{2}+2 n-10$		- $T_{n}=2 T_{n-1}+14, T_{1}=-6$

Question 11: Cloze [6]

The sixth term of an arithmetic sequence is $\mathbf{- 2 1}$ and the thirteenth term is $\mathbf{1 4}$.
To calculate the value of d, two equations must be used simultaneously.
These two simultaneous equations are $a+5 d=-21$ and (Ans. 1).
The value of d will then be equal to (Ans. 2) and the
first term of this sequence will be (Ans. 3).

1		2	
3			
- -35	- 5		$\rightarrow a+12 d=14$
- $a+13 d=14$	- -7		-1
- -46	- -26		-14

Question 12: Socrates [3]
Mathematics - LO 1 : AS 3

- 7 ; - 4 ; - 1 ; ...

The $n^{\text {th }}$ term of this arithmetic sequence is given by $\mathrm{T}_{n}=\ldots$
\square

Question 13: Socrates [10]

The greatest value of k for which $\sum_{t=1}^{k}(2 t-3)<528$ is ...
Type the number only.
\square

Question 14: Multiple Choice [2]

The $n^{\text {th }}$ term of a sequence is $3 n-2$.
The eighth term of this sequence will be equal to ...
A 22

B $3 n-2$

C $\frac{10}{3}$

D 2

Question 15: Multiple Choice [5]

Mathematics - LO 1 : AS 3
$3 ; x ; y ; 63$ are the first four consecutive terms of an arithmetic sequence.
The numerical values of x and y are ...
A $x=-23$ and $y=43$
B $x=23$ and $y=43$
C $x=-43$ and $y=23$
D $x=-23$ and $y=43$

