XT - MATHS Grade 12

Subject: Series and Sequences 1: Arithmetic

Total Marks: 84

Date: 2010/06/29

10

4

1. FALSE

Explanation: This series is arithmetic as ...

d = 13 - 11 and d = 15 - 13= 2 = 2

The sum of an arithmetic series is given by ...

$$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$$

a represents the first term of this series: a = 11

n represents the number of terms in this series: n = 10?

d represents the constant difference between the terms of this series: d = 2

Then ...

$$S_{n} = \frac{n}{2} [2(11) + (n - 1)(2)]$$

$$S_{n} = \frac{n}{2} [22 + 2n - 2]$$

$$S_{n} = \frac{n}{2} [20 + 2n]$$

The sum of this series must be larger than 200. Therefore ...

 $\frac{n}{2}$ [20 + 2*n*] > 200 n [10 + n] > 200-20 10(n - 10): 0 + $10n + n^2 > 200$ (n + 20): 0 + 0 n $n^2 + 10n - 200 > 0$ (n-10)(n+20) > 0-20 10

As the number of terms cannot be negative or a fraction, n > 10, i.e. only eleven or more terms will give a sum of larger than 200.

2. FALSE

Explanation: The first and second terms of an arithmetic progression are 13 and 19.

Therefore ...

$$d = T_2 - T_1$$

= 19 - 13
= 6

The n^{th} term of an arithmetic progression:

 $T_n = a + (n - 1)d$ *a* is the first term: a = 13*d* is the constant difference: d = 6*n* is the term number: the 35th term must be found, therefore n = 35

Therefore ...

$$T_{35} = 13 + (35 - 1)(6)$$

= 13 + (34 × 6)
= 13 + 204
= 217

The thirty-fifth term is therefore 217 and not 219.

3. B

Explanation: First determine if this is an arithmetic or a geometric series:

$d = T_2 - T_1$	$d = T_3 - T_2$
= 9 - 4	= 14 - 9
= 5	= 5
$r = T_2 \div T_1$	$r = T_3 \div T_2$
= 9 ÷ 4	= 14 ÷ 9
$=\frac{9}{4}$	$=\frac{14}{9}$

There is a constant difference between successive terms and not a constant ratio, therefore this series is arithmetic.

The sum formula for an arithmetic progression:

$$S_n = \frac{n}{2} [2a + (n-1)d] \quad OR \quad S_n = \frac{n}{2} [a+\ell]$$

a represents the first term of this series: a = 4 ℓ represents the last term of this series: $\ell = 54$ *n* represents the number of terms in this series: n = ?

d represents the constant difference between the terms of this series: d = 5

 T_n represents the last term of this series: $T_n = 54$

 S_n is the sum of *n* terms of this series: $S_n = ?$

The number of terms must be determined before the sum can be calculated.

The n^{th} term of anarithmetic progression:

$$T_{n} = a + (n - 1)d$$

$$54 = 4 + (n - 1)(5)$$

$$54 = 4 + 5n - 5$$

$$5n = 55$$

$$n = 11$$

Now ...

$$S_{11} = \frac{11}{2} [2(4) + (11 - 1)(5)]$$

= $\frac{11}{2} [8 + 50]$ OR $S_{11} = \frac{11}{2} [4 + 54]$
= $\frac{11}{2} \times 58$ = $\frac{11}{2} \times 58$
= 11×29 = 11×29
= 319 = 319

4. C

Explanation: The multiples are: 24; 27; 30; ...; 117; 120

This is an arithmetic progression as 3 is added to each term to get the next term. To find the number of terms to be added, you need to use the T_n -formula of an AP: 8

$$T_n = a + (n - 1)d$$

$$120 = 24 + (n - 1)(3)$$

$$120 = 24 + 3n - 3$$

$$3n = 99$$

$$n = 33$$

Now ...

$$S_{n} = \frac{n}{2} [2a + (n - 1)d]$$

$$S_{33} = \frac{33}{2} [2(24) + (33 - 1)(3)] \quad OR \qquad S_{n} = \frac{n}{2} [a + \ell]$$

$$S_{33} = \frac{33}{2} [48 + 96] \quad S_{33} = \frac{33}{2} [24 + 120]$$

$$S_{33} = \frac{33}{2} \times 144 \qquad S_{33} = \frac{33}{2} \times 144$$

$$S_{33} = 33 \times 72 \qquad S_{33} = 2 376 \qquad S_{33} = 2 376$$

5. D

Explanation: To determine whether a sequence is arithmetic, you need to find the difference (d) between consecutive terms.

A: $d = T_2 - T_1$ or $d = T_3 - T_2$ or $d = T_3 - T_2$ = 7 - 9 = 5 - 7 = 3 - 5 = -2 = -2 = -2The answers are the same, therefore sequence A is arithmetic.

B:

 $d = T_2 - T_1$ or $d = T_3 - T_2$ = 9 - 3 = 27 - 9 = 6 = 18

The answers are not the same, therefore sequence B is not arithmetic.

C: d

$d = \mathrm{T_2} - \mathrm{T_1}$	or	$d = \mathrm{T}_3 - \mathrm{T}_2$
= (3x + 3) - (x + 4)		= (5x + 2) - (3x + 3)
= 3x + 3 - x - 4		= 5x + 2 - 3x - 3
= 2x - 1 The answers are the san	ne, th	= 2x - 1erefore sequence C is arithmetic.

6. 12

Explanation:

$$\sum_{k=1}^{n} (2k - 1) = 144$$
$$[2(1) - 1] + [2(2) - 1] + [2(3) - 1] + \dots = 144$$
$$1 + 3 + 5 + \dots = 144$$

The terms of this series differ with 2, this series is therefore arithmetic.

The sum formula for an arithmetic progression:

4

$$\mathbf{S}_n = \frac{n}{2} \begin{bmatrix} 2a + (n-1)d \end{bmatrix} \quad \text{OR} \qquad \mathbf{S}_n = \frac{n}{2} \begin{bmatrix} a+\ell \end{bmatrix}$$

a represents the first term of this series: a = 1 ℓ represents the last term of this series: $\ell = 2n - 1$ *n* represents the number of terms in this series: n = ? *d* represents the constant difference between the terms of this series: d = 2 T_n represents the last term of this series: $T_n = 2n - 1$ S_n is the sum of *n* terms of this series: $S_n = 144$

Now ...

$$S_{n} = \frac{n}{2} [2a + (n - 1)d] \quad OR \qquad S_{n} = \frac{n}{2} [a + \ell]$$

$$144 = \frac{n}{2} [2(1) + (n - 1)(2)] \quad 144 = \frac{n}{2} [1 + (2n - 1)]$$

$$144 = \frac{n}{2} [2 + 2n - 2] \quad 144 = \frac{n}{2} [2n]$$

$$144 = n^{2} \quad 144 = n^{2}$$

$$n = \pm 12 \quad n = \pm 12$$

As *n* represents the number of terms, -12 is an invalid solution.

7. - 646

Explanation: The S_n -formula for an arithmetic progression:

$$S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]$$

a is the first term: $a = 11$
d is the constant difference: $d = -5$
n is the number of terms to be added: $n = 19$
Therefore ...
$$S_{19} = \frac{19}{2} \Big[2(11) + (19 - 1)(-5) \Big]$$
$$= \frac{19}{2} \Big[22 + (18)(-5) \Big]$$

$$= \frac{19}{2} [22 - 90]$$

= $\frac{19}{2} \times (-68)$
= $19 \times (-34)$
= -646

8. 20,5

Explanation: Arithmetic Mean = $\frac{T_1 + T_2}{2}$ = $\frac{16 + 25}{2}$ = $\frac{41}{2}$ = 20,5

6

9. (1) 1, 3, 4, 7, 11, 18

(2) is not

(3) Lucas

Explanation: 1. This is a second order difference equation, where the first two terms are given.

 $T_{n+2} = T_{n+1} + T_n, T_1 = T_2 = 1$ $T_1 = 1$ $T_2 = 3$ $T_3 = T_2 + T_1 = 3 + 1 = 4$ $T_4 = T_3 + T_2 = 4 + 3 = 7$ $T_5 = T_4 + T_3 = 7 + 4 = 11$ $T_6 = T_5 + T_4 = 11 + 7 = 18$

- 2. The difference between the terms is not constant. Therefor this is not an arithmetic pattern.
- 3. Eduoardo Lucas discovered this number pattern, when he compared different starting points to the better known Fibonacci series.

How nice to have a number pattern named after you!

10. (1) 74, 102

(2) quadratic

(3) $T_n = T_{n-1} + 4n$, $T_1 = -6$

Explanation: 1. Study the pattern: -6,	,	2,	14	,	30,	50	
Now determine the differences:		8	12		16	20	
Determine the differences of the differences:			4	4	4		

To determine the next two terms, this pattern of differences must be maintained. Hence the sixth and seventh terms must be 24 and 28 larger than its predecessors respectively. $T_6 = 50 + 24 = 74$ and $T_7 = 74 + 28 = 102$

- A linear pattern has its first difference constant.
 A quadratic pattern has its second difference constant.
 A cubic pattern has its third difference constant.
- 3. The formula $T_n = 2n^2 + 2n 10$ generates the pattern, but it is an explicit formula, ie not a recursive formula.

The formula $T_{n+1} = T_n + 4n$, $T_1 = -6$ generates $T_1 = -6$ $T_2 = T_1 + 4(2) = -6 + 8 = 2$ $T_3 = T_2 + 4(3) = 2 + 12 = 14$ $T_4 = T_3 + 4(4) = 14 + 16 = 30$ $T_5 = T_4 + 4(5) = 30 + 20 = 50$ This is the pattern required.

3. The formula $T_{n+1} = 2T_n + 14$, $T_1 = -6$ generates: $T_1 = -6$ $T_2 = 2T_1 + 14 = 2(-6) + 14 = -12 + 14 = 2$ $T_3 = 2T_2 + 14 = 2(2) + 14 = 4 + 14 = 18$ This is not the pattern required. **Explanation:** Substitute the two sets of given information into the T_n -formula for an arithmetic progression: $T_n = a + (n - 1)d$

 $\frac{6^{\text{th}} \text{ term is } -2:}{-21} \quad T_6 = a + (6 - 1)d$ $-21 = a + 5d \quad \dots \dots \quad [1]$ $\frac{13^{\text{th}} \text{ term is } 14:}{14 = a + 12d} \quad \dots \quad [2]$ Subtract [1] from [2]: $-21 = a + 5d \quad \dots \dots \quad [2]$ $\frac{14 = a + 12d \quad \dots \quad [1]}{-35 = -7d}$ $\therefore \quad 5 = d$

a represents the first term of the sequence.

To find the value of *a*, substitute d = 5 into -21 = a + 5d: -21 = a + 5(5) -21 = a + 25 a = -21 - 25a = -46

12. 3n - 10 - 10 + 3n

Explanation: The n^{th} term of an arithmetic sequence:

 $\mathbf{T}_n = a + (n-1)d$

a is the first term of the sequence, therefore a = -7. *d* is the difference between the terms of the sequence:

$$a = 1_2 - 1_1 \quad \text{or} \quad a = 1_3 - 1_2$$

= (-4) - (-7) = (-1) - (-4)
= -4 + 7 = -1 + 4
= 3 = 3

Therefore:

 $T_n = -7 + (n - 1)(3)$ [*n* remains *n* as it is unknown] = -7 + 3n - 3 = 3n - 10

13. 23

Explanation:

$$\sum_{t=1}^{k} (2t-3) = [2(1)-3] + [2(2)-3] + [2(3)-3] + \dots + [2(k)-3]$$
$$= -1 + 1 + 3 + \dots + (2k-3)$$

3

This is an arithmetic series with d = 2.

The sum formula for an AP:

_

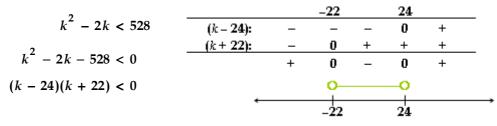
$$S_n = \frac{n}{2} [2a + (n-1)d]$$

a represents the first term of this series: a = -1*n* represents the number of terms in this series: n = k*d* represents the constant difference between the terms of this series: d = 2 S_n is the sum of *k* terms of this series: $S_k < 528$

Now ...

$$S_{k} = \frac{k}{2} [2(-1) + (k - 1)(2)]$$
$$= \frac{k}{2} [-2 + 2k - 2]$$
$$= \frac{k}{2} [2k - 4]$$
$$= k^{2} - 2k$$

Therefore ...



As k represents the term number of the last term, only 1; 2; 3; ...; 23 can be valid values for k (-22 < k < 24).

2

5

```
Therefore, the greatest value that k could have is 23.
```

14. A

Explanation:	
--------------	--

Therefore :

 $T_8 = 3(8) - 2$ = 24 - 2 = 22

 $T_n = 3n - 2$

15. B

Explanation: In this arithmetic sequence: a = 3, d = ?, n = 4 and $T_n = 63$ Then ...

 $T_n = a + (n - 1)d$ 63 = 3 + (4 - 1)d 60 = 3d20 = d

Therefore:

$x = T_2$	and $y = T_3$	
$= T_1 + d$	$= T_2 + d$	
= 3 + 20	= 23 + 20	
= 23	= 43	

15 Questions, 8 Pages