Name:
Subject: Inverses and Logarithms
Class: \qquad

Total Marks: 66

Question 1: True/False [8]

If $\log _{3}(5-x)=2-\log _{3}(1+x)$, then $x= \pm 2$.

TRUE

FALSE

Question 2: True/False [2]
Mathematics - LO 1 : AS 2
$\frac{\log x}{\log y}=\log \frac{x}{y}$

TRUE

FALSE

Question 3: Multiple Choice [6]
Mathematics - LO 1: AS 2
Simplify:

$$
\frac{\log _{2} 9-\log _{2} 3+\log _{2} 27}{\log _{2} 81-\log _{2} 27}=\ldots
$$

A
B $\frac{1}{4}$

C 4
D $\frac{1}{\log _{2} 3}$

Question 4: Multiple Choice [4]
$\frac{\log _{3} 27}{\log _{3} 81}=\ldots$
A $\mathbf{- 1}$
B $\frac{27}{81}=\frac{1}{3}$
C $\frac{3}{4}$
D $\quad \log _{3} 54$

If the graph of $y=\log _{a} x$ passes through the point $\left(\frac{1}{27} ;-3\right)$, then the value of a is \ldots
Type the number only.
\square
Question 6: Socrates [2]
$\log _{8}(\log 10)=\ldots$
Type the number only.
\square
Question 7: Socrates [6]
Solve for x :

$$
\begin{aligned}
\log _{x} 54+\log _{x} 5-\log _{x} 10 & =1 \frac{1}{2} \\
\therefore x & =\ldots
\end{aligned}
$$

Question 8: Cloze [4]

Complete the following process of solving for x :

$$
\begin{aligned}
\log x^{2} & =2 \\
\therefore x^{2} & =(\text { Ans. } 1) \\
\therefore x & =\text { (Ans. } 2)
\end{aligned}
$$

According to definition, x may be equal to (Ans. 3).

1	

2

3

>2	>-10	$> \pm 10$
$>2^{10}$	>10 only	>100

Question 9: Cloze [6]
$\frac{\log x}{\log 4}=1 \frac{1}{2}$
This equation will be undefined if (Ans. 1)
The solution of this equation is (Ans. 2).

2

```
x>0
x=0
*=32
\[
\begin{aligned}
& \Rightarrow x<0 \\
& >x=8 \\
& x=6
\end{aligned}
\]
```

$x=0$
$x \leq 0$

- $x= \pm 8$

Question 10: Cloze [6]

$\log _{2} y^{3}=6$

According to defintion, y must be (Ans. 1) in this equation.
Complete the following process of solving for y :

$$
\begin{aligned}
\log _{2} y^{3} & =6 \\
\therefore y^{3} & =\text { (Ans. 2) } \\
\therefore y & =\text { (Ans. 3) }
\end{aligned}
$$

1	

2

3

- larger than 0
$\stackrel{6}{6}$
- larger or equal to than 0
- smaller than 0
${ }^{*}{ }^{2}$
$\rightarrow 4$
- 2

Question 11: Socrates [6]

If $7^{x} \times 5^{x+2}=263$, then $x=\ldots$
Give your answer correct to two decimal digits.
\square

Question 12: Multiple Choice [4]

$\log _{3} \frac{a^{3} b^{2}}{x^{2}}$

When this expression is expanded (that is, written as separate logarithms), the answer will be ...
A $3 \log _{3} a+2 \log _{3} b-2 \log _{3} x$

B $\quad \log _{3} 3+\log _{3} a+\log _{3} b-\log _{3} x$

C $6 \log _{3} a b-2 \log _{3} x$
D $\log _{3} 3 a+\log _{3} b-\log _{3} x$

Question 13: True/False [2]

$\log _{2} x=-3$
When solving for x in the above equation, x will be equal to $\frac{\mathbf{1}}{\mathbf{8}}$.

TRUE

FALSE
$\log m^{2}+3 \log m-\log 5 m$
This expression written as a single logarithm:

$$
\log \frac{m^{5}}{5 m}
$$

TRUE

FALSE

Question 15: Socrates [2]

Solve for x without using a calculator:

$$
\begin{aligned}
\log _{3} 27 & =x \\
\therefore x & =\ldots
\end{aligned}
$$

