XT - MATHS Grade 12

Subject: Inverses and Logarithms
Date: 2010/06/29
Total Marks: 66

1. FALSE

Explanation:

$$
\begin{aligned}
\log _{3}(5-x) & =2-\log _{3}(1+x) \\
\log _{3}(5-x)+\log _{3}(1+x) & =2 \\
\log _{3}(5-x)(1+x) & =2 \\
\log _{3}\left(5+4 x-x^{2}\right) & =2 \\
5+4 x-x^{2} & =3^{2} \\
5+4 x-x^{2} & =9 \\
x^{2}-4 x+4 & =0 \\
(x-2)^{2} & =0 \\
x & =2
\end{aligned}
$$

You could also solve for x as follows:

$$
\begin{aligned}
\log _{3}(5-x) & =2-\log _{3}(1+x) \\
\log _{3}(5-x) & =2 \log _{3} 3-\log _{3}(1+x) \\
\log _{3}(5-x) & =\log _{3} 9-\log _{3}(1+x) \\
\log _{3}(5-x) & =\log _{3}\left(\frac{9}{1+x}\right) \\
(5-x) & =\frac{9}{1+x} \\
(5-x)(1+x) & =9 \\
5+4 x-x^{2} & =9 \\
x^{2}-4 x+4 & =0 \\
(x-2)^{2} & =0 \\
x & =2
\end{aligned}
$$

If $x=-2$ is substituted into the given equation:

$$
\begin{aligned}
\log _{3}(5-(-2)) & =2-\log _{3}(1+(-2)) \\
\log _{3}(5+2) & =2-\log _{3}(1-2) \\
\log _{3}(7) & =2-\log _{3}(-1) \\
\text { But } \log _{3}(-1) & \text { is not allowed! }
\end{aligned}
$$

Therefore, $x=\mathbf{2}$ is the only valid solution.

Explanation: According to log laws:

$$
\begin{aligned}
& \frac{\log x}{\log y}=(\log x) \div(\log y) \\
& \log \frac{x}{y}=(\log x)-(\log y)
\end{aligned}
$$

NOTE: $\frac{\log x}{\log y}$ can also be written as $\log _{y} x$.
3. C

Explanation:

$$
\begin{aligned}
& \frac{\log _{2} 9-\log _{2} 3+\log _{2} 27}{\log _{2} 81-\log _{2} 27} \\
&= \frac{\log _{2} 3^{2}-\log _{2} 3+\log _{2} 3^{3}}{\log _{2} 3^{4}-\log _{2} 3^{3}} \\
&=\left.\frac{2 \log _{2} 3-\log _{2} 3+3 \log _{2} 3}{4 \log _{2} 3-3 \log _{2} 3} \quad \text { [LOG LAW 3: } \log _{m} b^{a}=a \log _{m} b\right] \\
&= \frac{4 \log _{2} 3}{\log _{2} 3} \\
&= 4 \\
& \text { [Numerator and denominator simplified] } \\
& \text { [Equal factors cancelled] }
\end{aligned}
$$

OR

$$
\frac{\log _{2} 9-\log _{2} 3+\log _{2} 27}{\log _{2} 81-\log _{2} 27}
$$

$=\frac{\log _{2}(9 \div 3 \times 27)}{\log _{2}(81 \div 27)}$	[LOG LAW 1: $\log _{m} a+\log _{m} b=\log _{m} a b$
$=\frac{\log _{2} 81}{\log _{2} 3}$	LOG LAW 2: $\log _{m} a-\log _{m} b=\log _{m} \frac{a}{b}$]
$=\frac{\log _{2} 3^{4}}{\log _{2} 3}$	
$=\frac{4 \log _{2} 3}{\log _{2} 3}$	
$=4$	[LOG LAW 3: $\log _{m} b^{a}=a \log _{m} b$]

4. C

Explanation:

$$
\begin{aligned}
\frac{\log _{3} 27}{\log _{3} 81} & =\frac{\log _{3} 3^{3}}{\log _{3} 3^{4}} \\
& =\frac{3 \log _{3} 3}{4 \log _{3} 3} \\
& =\frac{3}{4}
\end{aligned}
$$

5. 3

Explanation: Substitute the given point into $y=\log _{a} x$:

$$
-3=\log _{a} \frac{1}{27}
$$

Now :

$$
\begin{aligned}
a^{-3} & =\frac{1}{27} \\
a^{-3} & =3^{-3} \\
a & =3
\end{aligned}
$$

6. 0

Explanation: $\log _{8}(\log 10)=\log _{8}\left(\log _{10} 10\right)$

$$
\begin{aligned}
& =\log _{8} 1 \\
& =0
\end{aligned}
$$

7. 9

Explanation: $\log _{x} 54+\log _{x} 5-\log _{x} 10=1 \frac{1}{2}$

$$
\begin{aligned}
\therefore \log _{x}\left(\frac{54 \times 5}{10}\right) & =1 \frac{1}{2} \quad \begin{array}{l}
\text { LOG LAW 1: } \log a+\log b=\log a b ; \\
\left.\log a-\log b=\log \frac{a}{b}\right]
\end{array} \\
\therefore \log _{x} 27 & =1 \frac{1}{2} \\
\therefore \log _{x} 27 & =\frac{3}{2} \\
\therefore x^{\frac{3}{2}} & =27 \quad \text { [Exponent form] } \\
\therefore x^{\frac{3}{2}} & =3^{3} \\
\therefore\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} & =\left(3^{3}\right)^{\frac{2}{3}} \\
\therefore x & =3^{2} \\
\therefore x & =9
\end{aligned}
$$

TEST:

According to definition, the value of x must be larger than 0 but not equal to 1 .
The solution $x=9$ is therefore allowed.
8. (1) 100
(2) ± 10
(3) $\pm \mathbf{1 0}$

Explanation: The complete calculation is as follows:

$$
\begin{aligned}
\log x^{2} & =2 \\
\log _{10} x^{2} & =2 \\
\therefore x^{2} & =10^{2} \quad \text { [exponential form] } \\
\therefore x^{2} & =100 \\
\therefore x & = \pm 10
\end{aligned}
$$

According to definition, x^{2} in $\log x^{2}=2$ must be positive.
But the square of any number/term is always positive, therefore x may be equal to both $\mathbf{1 0}$ and $\mathbf{- 1 0}$.
9. (1) $x \leq 0$
(2) $x=8$

Explanation: (1) According to definition: $x>0$
Therefore, $\log x$ will be undefined for $x=0$ and $x<0$.
(2) $\frac{\log x}{\log 4}=1 \frac{1}{2}$
$\therefore \frac{\log x}{\log 4}=\frac{3}{2}$
$\therefore 2 \log x=3 \log 4 \quad$ [Cross multiplied]
$\therefore \log x^{2}=\log 4^{3} \quad\left[\underline{\text { LOG LAW 3: }} a \log _{m} b=\log _{m} b^{a}\right]$
$\therefore x^{2}=4^{3} \quad$ [Logs removed]
$\therefore x^{2}=64$
$\therefore x= \pm 8$

TEST :

According to definition, x must be larger than 0 .
$8>0$, but -8 is not. Therefore, 8 is the only valid solution.
10. (1) larger than 0
(2) 2^{6}
(3) 4

Explanation:
(1) According to definition: $y^{3}>0$

$$
\therefore y>0
$$

(2) $\log _{2} y^{3}=6$

$$
\begin{aligned}
& \therefore y^{3}=2^{6} \quad \text { [Exponent form] (Ans. 2) } \\
& \therefore y^{3}=64 \\
& \therefore y^{3}=4^{3} \\
& \therefore y=4
\end{aligned}
$$

OR

$$
\begin{array}{rlrl}
\log _{2} y^{3} & =6 \\
\therefore \log _{2} y^{3} & =6 \log _{2} 2 & \quad\left[\log _{m} m=1\right] \\
\therefore \log _{2} y^{3} & =\log _{2} 2^{6} & \text { [LOG LAW 3: } \left.a \log _{m} b=\log _{m} b^{a}\right] \\
\therefore y^{3} & =2^{6} & \text { [Logs removed] (Ans. 2) } \\
\therefore y^{3} & =64 & & \\
\therefore y^{3} & =4^{3} & \\
\therefore y & =4 & & \\
\therefore y
\end{array}
$$

(3) According to definition, y^{3} must be larger than 0 .

Therefore: $y^{3}>0$

$$
\therefore y>0
$$

$4>0$, therefore $y=4$ is a valid solution.
11. 0,66

Explanation:

$$
\begin{aligned}
7^{x} \times 5^{x+2} & =263 \\
7^{x} \times 5^{x} \times 5^{2} & =263 \\
35^{x} \times 25 & =263 \\
35^{x} & =10,52 \quad \text { [divideby } 25] \\
\log 35^{x} & =\log 10,52 \\
x . \log 35 & =\log 10,52 \\
\therefore x & =\frac{\log 10,52}{\log 35} \\
\therefore x & =0,66
\end{aligned}
$$

12. A

Explanation:

$$
\begin{aligned}
& \log _{3} \frac{a^{3} b^{2}}{x^{2}} \\
& =\log _{3} a^{3} b^{2}-\log _{3} x^{2} \\
& \text { [LOG LAW 2: } \left.\log _{m} \frac{n}{p}=\log _{m} n-\log _{m} p\right] \\
& =\log _{3} a^{3}+\log _{3} b^{2}-\log _{3} x^{2} \quad\left[\text { LOG LAW 1: } \log _{m} n p=\log _{m} n+\log _{m} p\right] \\
& =3 \log _{3} a+2 \log _{3} b-2 \log _{3} x \quad\left[\underline{\text { LOG LAW 3: }} \log _{m} n^{p}=p \log _{m} n\right]
\end{aligned}
$$

13. TRUE

Explanation: $\log _{2} x=-3$

$$
\begin{aligned}
& \therefore x=2^{-3} \\
& \therefore x=\frac{1}{2^{3}} \\
& \therefore x=\frac{1}{8}
\end{aligned}
$$

TEST:

According to definition, the value of x must be larger than 0 .
$\frac{1}{8}>0$, therefore this solution is valid.
14. TRUE

```
Explanation: \(\quad \log m^{2}+3 \log m-\log 5 m\)
    \(=2 \log m+3 \log m-\log 5 m \quad\left[\right.\) LOG LAW 3: \(\left.\log _{x} b^{a}=a \log x_{x} b\right]\)
    \(=5 \log m-\log 5 m\)
    \(=\log m^{5}-\log 5 m \quad\left[\underline{\text { LOG LAW 3: }} a \log _{x} b=\log _{x} b^{a}\right.\) ]
    \(=\log \frac{m^{5}}{5 m} \quad\left[\underline{\text { LOG LAW 2: }} \log _{x} a-\log _{x} b=\log _{x} \frac{a}{b}\right]\)
OR
\[
\log m^{2}+3 \log m-\log 5 m
\]
\[
=\log m^{2}+\log m^{3}-\log 5 m \quad\left[\underline{\text { LOG LAW 3: }} a \log x_{x} b=\log _{x} b^{a}\right]
\]
\[
=\log \left(m^{2} \times m^{3} \div 5 m\right) \quad \begin{aligned}
& \text { [LOG LAW 1: } \log _{x} a+\log _{x} b=\log _{x} a b \\
& \left.\underline{\text { LOG LAW 2: }} \log _{x} a-\log _{x} b=\log _{x} \frac{a}{b}\right]
\end{aligned}
\]
\[
=\log \frac{m^{5}}{5 m}
\]
```

15. 3

Explanation: $\log _{3} 27=x$

$$
\begin{aligned}
& \therefore 3^{x}=27 \quad \text { [Exponent form] } \\
& \therefore 3^{x}=(3)^{3} \\
& \therefore x=3
\end{aligned}
$$

