XT - MATHS Grade 11

Name:	Class:
Subject: Functions 1: Parabolas and Lines	Date:
Total Marks: 66	
Question 1: True/False [6]	Mathematics - LO 2 : AS 3
The parabola $y = 3x^2 + x$ and the line $y = 3x + 1$ intersect at the point	ts $x = -\frac{1}{3}$ and $x = 1$.
TRUE FALSE	
Question 2: True/False [4]	Mathematics - LO 2 : AS 2, AS 3
The graph of the function $g(x) = -2x^2 + 4x - 3$ has a maximum value of	-1 when $x = 1$.
TRUE FALSE	
Question 3: True/False [2]	Mathematics - LO 2 : AS 3
The <i>y</i> -intercept of the graph of the function $y = 3x^2 - 4x - 4$ is (-4; 0).	

Question 4: Multiple Choice [4]

TRUE

The point (2; 6) lies on a parabola with turning point (1; 4). The equation of the parabola is ...

A
$$y = \frac{9}{2} \left(x^2 + 2x + 1 \right) + 4$$

FALSE

$$\mathbf{B} \quad y = 2x^2 - 4x + 6$$

C
$$y = 10x^2 - 20x + 14$$

$$\mathbf{D} \quad y = -2x^2 + 8x - 2$$

E
$$y = -\frac{2}{25} \left(x^2 - 2x + 1 \right) + 4$$

Mathematics - LO 2 : AS 2, AS 3

Question 5: Multiple Choice [4]

The point (1; -12) lies on a parabola with x-intercepts 3 and -2. The equation of the parabola is ...

A
$$y = 2x^{2} - 2x - 12$$

B $y = x^{2} - x - 6$
C $y = x^{2} - 5x - 6$
D $y = x^{2} - x - 12$

Question 6: Multiple Choice [3]

The graph of the function $y = ax^2 + bx + c$ with $b^2 < 4ac$, will ...

A cut the *x*-axis in one place.
B cut the *x*-axis in two places.
C not cut the *x*-axis.

Question 7 refers to the following graphic

Mathematics - LO 2 : AS 3

Question 7: Multiple Choice [4]

Determine the equation of the given graph which cuts the y-axis at -10.

A
$$y = x^{2} + 3x - 10$$

B $y = x^{2} - 3x - 10$
C $y = -x^{2} + 3x - 10$
D $y = -x^{2} - 3x - 10$

Question 8: Socrates [6] Determine if the line *v* = *x* - *3* is a tangent or a secant to the parabol

Determine if the line y = x - 3 is a tangent or a secant to the parabola $y = x^2 - 5x + 2$. Type in just the word: "tangent" or "secant"

Question 9: Socrates [6]

Determine if the line y = x - 3 is a tangent or a secant to the parabola $y = x^2 + 3x - 2$. Type in just the word: "tangent" or "secant"

Question 10: Socrates [2]

The function $f(x) = -3(x + 1)^2 - 2$ is vertically translated so that its turning point now rests on the x-axis. The coordinates of the new y-intercept are ...

Give your answer in the form (a; b).

Question 11: Socrates [1]

The function $f(x) = -3x^2 + 2x - 5$ has a ... value.

Type either "minimum" or "maximum" as your answer.

Mathematics - LO 2 : AS 3

Mathematics - LO 2 : AS 3

Mathematics - LO 2 : AS 2

Mathematics - LO 2 : AS 2

Question 12: Cloze [6]

<u>Given function</u>: $y = 2\left(x - \frac{1}{2}\right)^2 + 4\frac{1}{2}$

The turning point of this function is (Ans. 1). The function can also be written in the form (Ans. 2). The *x*-intercepts of the function are (Ans. 3).

Given the function $f(x) = 3(x - 2)^2 + 3$.

The coordinates of the turning point of the function are (Ans. 1) If the graph of this function is moved **three** units vertically up, then the turning point of the graph of that function will be (Ans. 2). The equation of the new function will then be (Ans. 3).

1	2	
3		
▶(2;6)	► $f(x) = 3x^2 - 12x + 18$	▶(5;3)
$f(x) = 3x^2 - 30x + 78$	▶(5;6)	$f(x) = 3x^2 - 30x + 81$
▶(2;3)	▶(-2;3)	

Question 14 refers to the following graphic

Question 14: Cloze [8]

Mathematics - LO 2 : AS 2, AS 3; LO 3 : AS 4

Use the accompanying graph to determine the following:

The coordinates of A are (Ans. 1).

The equation of this function is (Ans. 2).

The equation of the graph symmetrical to the given graph about the x-axis is (Ans. 3).

Question 15: Multiple Choice [4]

The point (-2; 8) lies on a parabola that touches the *x*-axis at -4. The equation of the parabola is ...

$$A \quad y = 2x^2 + 8$$

Г

_

B
$$y = x^2 + 8x + 16$$

C
$$y = \frac{2}{9}(x-4)^2$$

D
$$y = 2x^2 + 16x + 32$$

$$\mathbf{E} \quad y = x^2 + 4$$

15 Questions, 5 Pages

Mathematics - LO 2 : AS 2, AS 3