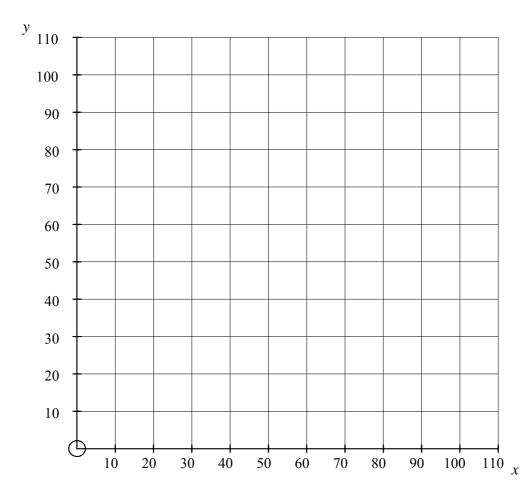


NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2009

MATHEMATICS: PAPER I

EXAMINATION NUMBER						

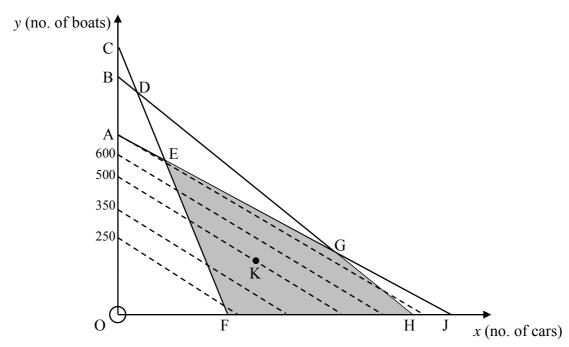
Time: 3 hours


ANSWER BOOKLET

QUESTION 6

(a) The following constraints apply to a linear programming problem.

$$x \ge 0$$
, $y \ge 0$, $x + y \ge 50$, $x + y \le 100$, $y \le x$


(1) Draw these constraints on the axes below and shade the feasible region.

(3)

Give the ma	eximum value of y that satisfies all the constraints.
	bjective function $C = 2x + y$ determine the minimum value
of C that sa	atisfies all the constraints.

(b) A linear programming technique has been applied to a situation where the variables are the number of cars (x) and the number of boats (y) produced by a toy manufacturer. The shaded area below is the feasible region:

Assume that all points A to K have integer coordinates.

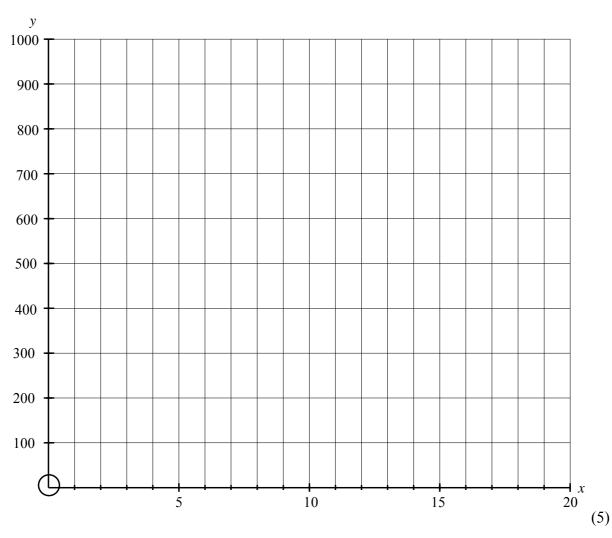
Suppose that c_1 is the profit made on each car and c_2 is the profit made on each boat. Hence the values c_1 and c_2 can be assumed to be positive constants.

The profit function is P	$= \mathbf{c}_1 x + \mathbf{c}_2 y$
and is represented on the	graph above by dotted lines.

Identify the	ne point in the feasible region that yields the maximum profit.
car incre	It of an improved manufacturing process, the profit made on each asses to become c_3 , whereas the profit on each boat remain such that the profit function is now $P = c_3 x + c_2 y$.
Determin	e which labelled point(s) in the feasible region are now likely to the profit.

15 marks

QUESTION 7


Alex decides to include both swimming and running in her exercise plan.
On day 1, Alex swims 100 m and runs 500 m.
Each day she will increase the distance she swims by 50 m and the distance she runs will increase by 3,5% of the distance she ran on the previous day.

(a) Determine, in terms of n, the distance that Alex

IEB Copyright © 2009 PLEASE TURN OVER

-			
			_

(b) On the set of axes provided, plot points for each of the exercise types. You may join the points to illustrate the trend.

(c) **Use your graphs** to determine the first day on which the distance Alex swims will be greater than the distance she runs.

(1)

12 marks