Sunday Cimes

MATRIC

 yOUR ESSENTIL

EXEMPLARSHMEMORANDA

MATHEMATICS PAPER 1 MEMORANDUM

$$
\begin{align*}
& \text { 1.1.1 } 2 x^{2}+7 x=30 \\
& 2 x^{2}+7 x-30=0 \\
& (2 x-5)(x+6)=0 \checkmark \\
& \therefore x=\frac{5}{2} \text { or } x=-6 \vee \vee \tag{4}\\
& \text { 1.1.2 } 2 x(x-2)-5=0 \\
& 2 x^{2}-4 x-5=0 \checkmark \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{4 \pm \sqrt{(-4)^{2}-4 \times(2)(-5)}}{2 \times 2} \\
& \therefore x=\frac{4+\sqrt{56}}{4} \text { or } x=\frac{4-\sqrt{56}}{4} \text { ح } \\
& \text { Or } x=2,87 \text { or } x=-0,87 \\
& \text { 1.1.3 } \quad 4 x^{2}+7 x-2<0 \\
& \begin{array}{cc}
\left(\begin{array}{l}
4 x-1)(x+2)<0 \text { ひー } \\
+, \\
-2
\end{array}\right. & + \\
\hline \frac{1}{4}
\end{array} \\
& -2<x<\frac{1}{4} \tag{3}\\
& \text { 1.2.1 } 2 x+6-y=0 \\
& 2 x+6=y \\
& y+3 x^{2}=8 x+3 \\
& y=-3 x^{2}+8 x+3 \checkmark
\end{align*}
$$

1．2．2
$\therefore 2 x+6=-3 x^{2}+8 x+3 v$
$3 x^{2}-6 x+3=0$
$x^{2}-2 x+1=0$
$(x-1)^{2}=0 \checkmark$
$\therefore x=1 v$
$\therefore y=2 x+6=8 \checkmark$

$(1 ; 8)$ is the point of contact between the straight line $y=2 x+6$ and the parabola $y=-3 x^{2}+8 x+3$ ．There is one point of contact．
\Rightarrow line is a tangent to the curve．$\checkmark \checkmark$
（4）
2.1
$P=\frac{x\left[1-(1+i)^{-n}\right]}{i}$ ．

$800000=\frac{7500\left[1-\left(1+\frac{3}{400}\right)^{-n}\right]}{\frac{3}{400}}$
$800000 \times \frac{3}{400} \div 7500=1-\left(\frac{403}{400}\right)^{-n}$
$\frac{20}{25}=1-\left(\frac{403}{400}\right)^{-n} \downarrow$
$\left(\frac{403}{400}\right)^{-n}=\frac{5}{25}=\frac{1}{5}$
$-n=\left(\frac{\log \frac{1}{5}}{\log \frac{403}{400}}\right)$,
$-n=-215,4$ months \checkmark
\therefore It will take 18 years to pay back the loan. \checkmark
(Simplifications at various stages are not necessary.)
2.2.1 $\quad \mathrm{A}=\mathrm{P}(1-i)^{n} \checkmark$
$A=1500000\left(1-\frac{18}{100}\right)^{5} \checkmark$
$\mathrm{A}=556$ 109,76 V
\therefore They are worth R556 109,76.
2.2.2 $\quad \mathrm{A}=\mathrm{P}(1+i)^{n} \checkmark$
$\mathrm{A}=1500000\left(1+\frac{4.5}{100}\right)^{5} v$
A = 1869 272,91 \checkmark
\therefore Sinking fund required is
R1 869 272,91 - R556 109,76
= R1 313 163,15
(4)
2.2.3
$F=\frac{x\left[(1+i)^{n}-1\right]}{i}$
$1313163,15=\frac{x\left[\left.\left(1+\frac{1}{12} \times 6 \%\right)^{5 \times 12}-1 \right\rvert\,\right.}{\frac{1}{12} \times 6 \%}$
$x=\frac{1313163,15 \times \frac{1}{12} \times 6 \%}{\left[\left(1+\frac{1}{12} \times 6 \%\right)^{60}-1\right]}$
$x=18821,30465$
\therefore They will need to pay R18 821,30 per month.
3.1.1 Quadratic sequence \checkmark
3.1.2

T_{0}	T_{1}	T_{2}	T_{3}	T_{4}	T_{5}
9	9	11	15	21	29
0		2	4	6	8
C-					
	2	2	2	2	

Second difference $=2$
$\therefore 2 a=2$
$a=1 \checkmark$
By inspection $\mathrm{T}_{0}=9$
$\therefore c=9 v$
$\therefore \mathrm{T}_{n}=n^{2}+b n+9$
$\mathrm{T}_{1}=1^{2}+b+9=9$
$\therefore b=-1 v$
$\therefore \mathrm{T}_{n}=n^{2}-n+9 \checkmark$
(or equivalent method)
3.2 Sammy:

$$
\begin{align*}
a=2 \quad \mathrm{~T}_{4}=a+3 d & \tag{4}\\
=2+3 d & =17 \\
3 d & =15 \\
d & =5
\end{align*}
$$

$\therefore \mathrm{T}_{20}=a+19 d$

$$
=2+19 \times 5
$$

$$
=97
$$

$\therefore x=97 v$
Solly:
$\mathrm{T}_{4}=a+3 d=59$
$\mathrm{T}_{20}=a+19 d=107 v$ $16 d=48$

$$
d=3 v
$$

$\therefore \mathrm{T}_{4}=a+3 d=59$

$$
a+9=59
$$

$$
\begin{equation*}
a=50 \tag{6}
\end{equation*}
$$

$\therefore y=50$
4.1.1 2010
109% of $85000=$ R 92650
109% of $92650=$ R100 988,50
4.1.2 GP with $a=85000$
$r=109 \%=1,09 \checkmark$
$\mathrm{T}_{n}=a r^{n-1} \checkmark$
$\mathrm{T}_{15}=85000(1,09)^{15} \checkmark$

$$
\begin{equation*}
\text { = R309 611,01 } \checkmark \tag{4}
\end{equation*}
$$

4.2
$\sum_{k=0}^{3} x=\frac{2}{5^{k}}$
$=2+\frac{2}{5}+\frac{2}{25}+\frac{2}{125}$ v
$=\frac{312}{125}(2,496) \sim$
4.3.1 GP with $a=20$
$r=\frac{3}{4}$
$S_{n}=\frac{a\left[1-r^{n}\right]}{1-r}$,

$$
\begin{aligned}
S_{n} & =\frac{20\left[1-\left(\frac{3}{4}\right)^{10}\right]}{1-\frac{3}{4}} \\
& =75,49 \mathrm{v}
\end{aligned}
$$

\therefore Depth is $75,49 \mathrm{~m}$ ．
4．3．2

$$
\begin{align*}
S_{\infty} & =\frac{a}{1-r} \\
& =\frac{20}{1-\frac{3}{4}} \\
& =80 \\
\mathrm{~S}_{\infty} & =80 \mathrm{~m} \tag{4}
\end{align*}
$$

\therefore Company will never reach the water．
5．1．1
$f(x)=\frac{-3}{x-1}+2$
asymptotes at $x=1 ; y=2$
y－intercept：$x=0 \quad \therefore f(0)=\frac{-3}{0-1}+2=5$
x－intercept：$y=0 \therefore 0=\frac{-3}{x-1}+2$

$$
\begin{aligned}
\frac{3}{x-1} & =2 \\
3 & =2 x-2 \\
5 & =2 x \\
\frac{5}{2} & =x
\end{aligned}
$$

5．1．2 Axes of symmetry：
$y=x+c$ and $y=-x+c$
Pass through $(1 ; 2)$
$\therefore 2=1+c \quad 2=-1+c$

$$
\begin{equation*}
1=c \quad 3=c \tag{5}
\end{equation*}
$$

$\therefore y=x+1$ and $y=-x+3 \checkmark \vee$
5．2．1 $\quad y=a\left(x-x_{1}\right)\left(x-x_{2}\right)$
$y=a(x+1)(x-3)$
Substitute $(0 ;-1)$ ：
$-1=a(0+1)(0-3)$ レ
$-1=-3 a$
$\frac{1}{3}=a v$

$$
\begin{align*}
\therefore p(x) & =\frac{1}{3}(x+1)(x-3) \tag{3}\\
& =\frac{1}{3}\left(x^{2}-2 x-3\right) \\
& =\frac{1}{3} x^{2}-\frac{2}{3} x-1 \tag{3}
\end{align*}
$$

6．2．1
$f(x)=x \checkmark$

$$
\begin{equation*}
f(x)=x^{4}+\sqrt{x}-\frac{9}{x} \tag{3}
\end{equation*}
$$

$f(x)=x^{4}+x^{\frac{1}{2}}-9 x^{-1}$
$\therefore f^{\prime}(x)=4 x^{3}+\frac{1}{2} x^{-\frac{1}{2}}+9 x^{-2}$
レレ
6．2．2 $y=t(t+1)$
$y=3 x(3 x+1) \checkmark$
$y=9 x^{2}+3 x$
$\therefore \frac{d y}{d x}=18 x+3 v$
6．3．1 $\quad A(x)=-\frac{1}{2} x^{3}+12 x^{2}$
$A(x)=-\frac{3}{2} x^{2}+24 x v$
\therefore let $0=-\frac{3}{2} x^{2}+24 x v$
$0=x^{2}-16 x$
$0=x(x-16)$
$x=0$ or $x=16$
\therefore Maximum area will be covered after 16 months．\checkmark
6．3．2
$A^{\prime}(x)=-\frac{3}{2} x^{2}+24 x$
$A^{\prime}(1)=-\frac{3}{2}(1)^{2}+24(1) \checkmark$
$=22 \frac{1}{2}$
\therefore The rate of growth was $22 \frac{1}{2} \mathrm{~m}^{2} /$ month one month after the study had begun．
7．1 $f(x)=x^{3}-4 x^{2}-3 x+18$
$f(3)=27-(4 \times 9)-(3 \times 3)+18=0 \checkmark$
7．2 $0=x^{3}-4 x^{2}-3 x+18$
$0=(x-3)\left(x^{2}-x-6\right)$ ，
$0=(x-3)(x-3)(x+2) \checkmark$
$\therefore x$－intercepts at $x=3$ and $x=2 . \checkmark \checkmark$
7．3 $f^{\prime}(x)=3 x^{2}-8 x-3=0$ for turning points
$\therefore(3 x+1)(x-3)=0$
$x=-\frac{1}{3}$ and $x=3 v$
$\therefore f(x)=\left(-\frac{1}{3}\right)^{3}-4\left(-\frac{1}{3}\right)^{2}-3\left(-\frac{1}{3}\right)+18$

$$
=\frac{500}{27}(=18,52)
$$

$$
f(3)=0
$$

\therefore Turning points at $\left(-\frac{1}{3} ; \frac{500}{27}\right)$ and $(3 ; 0)$ ．
\checkmark
7.4

$\checkmark \checkmark$ for each of the points
$7.5 \quad f^{\prime \prime}(x)=6 x-8=0 \checkmark$
for point of inflection．

$$
\therefore x=\frac{8}{6}=\frac{4}{3}
$$

8．1 $\quad V=$ Area of base \times Height
$2,5=x^{2} h \nu$
$\frac{2.5}{x^{2}}=h v$
8．2 Area $=2\left(x^{2}+4 x h\right) \checkmark$

$$
=2 x^{2}+8 x \times \frac{2.5}{x^{2}}
$$

9.2

マレレレレ
$9.3 \quad P=400 x+1000 y \checkmark$
$9.4-400 x+P=1000 y$
$-\frac{400}{1000} x+\frac{P}{1000}=y$
$-\frac{2}{5} x+\frac{P}{1000}=y v$
\therefore Use search line of slope $-\frac{2}{5} \ldots$ see
sketch．\checkmark
\therefore Maximum profit for
$x=6$ and $y=12$ at point A．
9．5 New profit equation：
$P=500 x+1000 y$
$-\frac{500}{1000} x+\frac{P}{1000}=y$
$-\frac{1}{2} x+\frac{P}{1000}=y v$
This line is parallel to one of the borders of the feasible region．Therefore maximum profit occurs at any whole－ number point on this line．\checkmark
i．e． $\mathrm{A}(6 ; 12)$
$\mathrm{B}(8 ; 11)$
$C(10 ; 10) \checkmark$

