

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2008

PHYSICAL SCIENCES: PAPER I

MARKING GUIDELINES

Time: 3 hours

150 marks

These marking guidelines are prepared for use by examiners and sub-examiners, all of whom are required to attend a standardisation meeting to ensure that the guidelines are consistently interpreted and applied in the marking of candidates' scripts.

The IEB will not enter into any discussions or correspondence about any marking guidelines. It is acknowledged that there may be different views about some matters of emphasis or detail in the guidelines. It is also recognised that, without the benefit of attendance at a standardisation meeting, there may be different interpretations of the application of the marking guidelines.

1.1.7 Some E_k is transferred \checkmark to sound \checkmark , heat, etc

(2)

(4) [**20**]

1.1.8

TWO VALID FACTS 1.3.2 The ball **falls from its maximum height** and **reaches the floor at C**. 1.3.3 At E ✓

1.3.4 0,03 s
$$\checkmark$$
 (0,97 - 0,94) (1)

 \checkmark

(1)

(1)

✓

1.3.5 Impulse is the product of the force that is exerted on an object and the time (of contact). (force x time) (2) Impulse equals change in momentum (only 1)

1.3.6 F =
$$\frac{\text{implied } \checkmark}{\Delta t} = \frac{(0,25)(4) - (0,25)(-6,2)}{0,03} = 85 \text{ N} \checkmark$$
 (3)

1.3.7 Upwards/ up ✓

1.4 **Optional**

1.4.1 vertical component of initial speed = $26\sin 35^\circ = 14.9 \text{ m.s}^{-1}$

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta y$$

$$0 = (14,9)^{2} + 2(-10) \Delta y$$

Max height = 11,1 m
(3)

1.4.2 horizontal component of initial speed = $26\cos 35^\circ = 21,3 \text{ m.s}^{-1}$

time to gain max height:
$$v_f = v_i + a\Delta t$$

 $0 = 14,9 + (-10) \Delta t$
 $\Delta t = 1,49 s$
Total time for motion = 2x1,49 = 2,98 s
 $\Delta x = v_i\Delta t + 0$ (no horizontal acceleration)
 $= (21,3)(2,98)$
 $= 63,47 m$
(5)

1.4.3 No: when the ball reaches the poles it is near the end of its trajectory and still needs to be more than 3 meters above the ground. (2)[10]

45 marks

(1) [**10**]

QUESTION 2

2.1 2.1.1	(a)	blue, red and green \checkmark	(1)	
	(b)	\checkmark \checkmark \checkmark red and green	(2)	
	(c)	all the colours are absorbed (no colours are reflected) nothing of	or (2)	
2.1.2	at the blue filter, only blue light passes through (other colours absorbed) at the cyan			
	filter,	blue light passes through (cyan = blue + green) can use diagram		
	blue 1	ight will be seen on the \checkmark screen.	(3)	
2.1.3	(a) Refraction ✓			
	(b)	Refraction is influenced by wavelength/ frequency ✓ TWO VALID) (2)	
		Colour with longer wavelengths are diffracted less (red) and COHERENT FA shorter wavelengths diffracted more (violet).	CTS (2)	
2.1.4	The m	light of defferent frequency travels at different speed through glass ✓ therefore refracted at different angles ✓ ✓ no green dots beam light up ✓ hask must cover the green dots but the electron beams must strike the red and		
	 If the same of th			
2.2				
2.2.1	distan	ce = time × speed \checkmark) $x = vt$ Can use symbols.		
	=	(half the time for the pulse to reach the object and return) × (the speed of sound in air) / (340 m.s. ⁻¹) \checkmark	(3)	
2.2.2	The categories tempe	amera can focus on something behind/ in front of the object v depends on the erature of the air.		
	camer any tv	Ta snake battery going flat vo acceptable reasons. $\checkmark \checkmark$	(2)	

[5]

(1)

(1)

2.3

2.3.1	To the left. ✓	(1)

- 2.3.3 The pitch will be higher \checkmark increased.
- 2.3.4 The medium (water) is much denser than air ✓
 Particles are much closer together/ stiffer/stronger bonds hit each other more quickly
 (1)

2.3.5
$$f_o = \frac{v_{sound}}{v_{sound}} \underbrace{f_{ship}}_{V_{sound}} \underbrace{f_{ship}}_{V_{$$

$$V_s = 4.4 \text{ m.s}^{-1} \checkmark \text{ (if sign + 2 out of 4)}$$
 UNITS (4)

- 2.3.7 Application ✓ (ultra sound: fetal heart beat) motion of stars (galaxies) (rate of flow of blood through heart) (speed tracking)
 Explanation of working ✓✓ sunoke [ffect (quality of life or society) ✓✓ (2)
 - [15]

35 marks

same

(6)

QUESTION 3

Electromagnetic induction	(1)
Mechanical/kinetic energy to electrical energy	(1)
(Slip) rings	(1)
Carries the current in and out of the coil \checkmark (completes the circuit)	(1)
Brushes	(1)
Carries the current (from the rings) \checkmark to the external circuit	
provide a good correction (between circuit and rings).	
	Electromagnetic induction Mechanical/ kinetic energy to electrical energy (Slip) rings Carries the current in and out of the coil ✓ (completes the circuit) Brushes Carries the current (from the rings) ✓ to the external circuit provide a good correction (between circuit and rings).

- 3.7.1 max ✓ 3.7.2 ABCD ✓
- 3.7.3 Zero ✓
- 5.7.5 Zelo V
- 3.7.4 Max ✓
- 3.7.5 DCBA ✓
- 3.7.6 No current
- 3.7.7 Max ✓ ►
- 3.8

3.8.1 and 3.8.2

3.9

3.9.1	Any two ways to use electricity more efficiently as a family. $\checkmark \checkmark$	(2)
3.9.2	5 years $(5\ 000 + 2\ 000 \times = 15\ 000)$ \checkmark $(7\frac{1}{2}\ yrs)$	(1)
3.9.3	Two advantages $\checkmark \checkmark$ Work at night; work in cloudy cold conditions, turn on when needed. Low installation cost	(2)
3.9.4	Two disadvantages $\checkmark \checkmark$ Only work during sunny times, ugly on roof, dusty, needs cleaning High installation	(2)
3.9.5	Choice $(1) \checkmark$ Motivate x 2 $(2) \checkmark \checkmark$	(3) [10]

30 marks

QUESTION 4

4.1.1 light emitting diode
$$\checkmark$$
 (1)
4.1.2 It emits light (when forward biased (current is able to flow thbrough)) \checkmark (1)

1 1

A C (2) (Negatively dope)

4.1.3 When a diode is in forward bias, electrons move from the n-type semi-conductor to the p-type. ✓ (positively doped)

The holes in the \checkmark valency band, which has a **lower energy** than the conductor band, **are now filled with electrons**. (Valid chemical deswcription) When the electrons move from the conductor band to the valency band, they emit energy as light dropping to lower-

(2) [**10**]

(2)

(1)

- 4.1.5 Uses very little energy (low current)
 Can work with batteries if there is no electricity. cheap with small Has a long life (up to 10 years). any 2 ✓ ✓
- 4.2 **Optional**

energy level. ✓

4.2.1 light amplification by stimulated emission of radiation

- 4.2.2 All the photons emitted have the same wavelength (or energy E=hf) and colour \checkmark (1 or 0)
- 4.2.3 When substances are heated, the atoms are lifted to higher energy states because electrons move to higher energy levels. An atom with electrons that can move from a state of lowest energy E_0 (ground state) to a higher state (the excited state). The electron in the ground state absorbs a photo of energy (hf) and moves to a higher energy state.

The difference in energy equals the energy of the photon.

An atom cannot stay in the excited state. It will emit a photon of energy hf and return to its ground state. This happens spontaneously.

A photon with energy hf can stimulate an electron to return from its excited state to its ground state. The atom emits a photon of energy hf. This is stimulated emission and it produces light amplification because each photon causes the emission of an additional photon of another atom.

4.2.4 example of use (1) effect on quality of life (2)

(4)

(3) [**10**]

10 marks

QUESTION 5

5.1				
5.1.1	electroscope 2 mark either correct.	(1)		
5.1.2	photo electric effect $\sqrt{\sqrt{-1}}$	(1)		
5.1.3	For any metal there is a minimum frequency at which electrons will emitted from this metal without kinetic energy.			
5.1.4	a $\checkmark \checkmark$ and b \checkmark and c \checkmark			
5.1.5	The frequency of the ultra ✓ violet light is higher than ✓ the threshold frequency of aluminium. (2 or 0) electrons are emitted. (I don't understand why the leaves diverge) BONUS	(2) (3)		
5.1.6	no observation/ no electrons emitted \checkmark fin framed – f threshold copper	(1)		
5.1.7	Leaf will fall back faster/ more electrons will be emitted (per sec.) ✓ diverge faster			
5.1.8	No change in observation/ same number of photo-electron s emitted per second \checkmark	(1)		
5.1.9 • • 5.2 5.2.1 5.2.2	 If the frequency of the light is lower than the threshold frequency, nothing happens to the gold leaf. ✓ If the frequency of the light is the same as the threshold frequency, the gold leaf falls back slightly. ✓ If the frequency of the light is higher than the threshold frequency, the gold leaf will do the same as in the previous experiment. ✓ If the intensity of the light in the previous two experiments is increased, the leaf will fall back faster/ more. ✓ Any TWO valid observations ✓ ✓ each. 1 The frequency is inversely ✓ ✓ proportional to the wavelength. (indirectly) 2 c = fλ ✓ 			
	$3x10^{8} = (6,67x10^{14}) \lambda$ $\lambda = 4,5 x 10^{-7} m \checkmark$ UNITS	(2)		
5.2.3	 (a) At hospital for X-rays/ cancer treatment ✓ (b) A radio/ TV/ radar ✓ (c) Infra red at the physiotherapist/ night vision/ stealth/ heater/ stove ✓ 	(3)		
5.2.4	 (a) E = hf ✓ (b) The energy associated with this frequency is very high ✓ and is dangerous to all living matter. ✓ damage 	(1)(2)(1)		
	 (c) Gamma ✓ (d) Hiroshima / Nagasaki ✓/ Japan in the 2nd World War ✓. 	(1) (2) [13]		
	30 mark	S		