GRADE 12
DATE: August 2010

NAME: \qquad TEACHER: \qquad

QUESTION	MARKS	LO1	LO2
1.	12		
2.	11		
3.	14		
4.	13		
5.	23		
6.	19		
7.	14		
8.	10		
9.	23		
10.	11		
TOTAL	150		

Given: $f(x)=\frac{5}{x-3}-1$
a) What kind of graph does f represent?
b) Write down the equations of the asymptotes of f. \qquad
c) Determine the intercepts with the axes. \qquad
\qquad
\qquad
\qquad
d) Sketch the graph of f, clearly showing all relevant features of this graph.

e) Give the new equations after the following transformations:

1) $\quad f(x)$ reflected about the y-axis \qquad
\qquad
\qquad
2) $f(x)$ translated 3 units to the right and 2 units up \qquad
\qquad
\qquad

Let \boldsymbol{x} be the number of articles of model A and \boldsymbol{y} be the number of articles of model B which can be manufactured daily by a factory, subject to the following constraints:

$$
\begin{aligned}
& x \geq 4 \\
& y \geq 6
\end{aligned}
$$

$$
\begin{gathered}
x+y \geq 12 \\
5 x+4 y \leq 80 \\
2 y+x \leq 28
\end{gathered}
$$

a) Represent all the constraints on the graph paper provided.

Clearly indicate the feasible region.

b) If it costs R300 to make each article of model A and R200 to make each article of model B, write down an equation to represent the total cost, T, to manufacture x articles of model A and y articles of model B . \qquad
\qquad
\qquad
\qquad (2)
c) Draw on the graph a straight line that you would use to minimize the total production cost. \qquad
\qquad
\qquad
\qquad
d) Give the number of articles of each model that should be manufactured to ensure a minimum cost, and determine the minimum cost. \qquad
\qquad
\qquad
\qquad
\qquad
e) If the manufacturing cost is adjusted and it now costs the same to manufacture models A and B, but it is not desirable to make more of model A than of model B, determine how many of each should be manufactured to ensure minimum expenditure. \qquad
\qquad
\qquad
\qquad
\qquad (4)

Question 8
[12 marks]

Given: A: $f(x)=4^{x}$
a) Sketch A and A^{-1} on the same set of axes. Label all relevant points.

b) Determine a if $f(a)=8$.
\qquad
\qquad
\qquad
c) Explain how you can use coordinates and transformation rules to determine b if $f^{-1}(8)=b$?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

