NAME:_____TEACHER:_____

QUESTION	MARKS	LO1	LO2
1.	12		
2.	11		
3.	14		
4.	13		
5.	23		
6.	19		
7.	14		
8.	10		
9.	23		
10.	11		
TOTAL	150	/34	/116

Question 3

[14 marks]

Given: $f(x) = \frac{5}{x - 3} - 1$

a)	What kind of graph does <i>f</i> represent?	(1)
----	---	-----

		_(2				
	Determine the intercepts with the axes.					
		_(2				
d)	Sketch the graph of <i>f</i> , clearly showing all relevant features of this graph.					
_						
_						
_						
_						
	1) <i>f (x)</i> reflected about the y-axis					
		_(
	2) <i>f</i> (<i>x</i>) translated 3 units to the right and 2 units up					
		- (

Question 6 [19 marks]

Let **x** be the number of articles of model A and **y** be the number of articles of model B which can be manufactured daily by a factory, subject to the following constraints:

 $\begin{array}{rrrr} x & \geq & 4 \\ y & \geq & 6 \end{array}$

- a) Represent all the constraints on the graph paper provided. Clearly indicate the feasible region.

b) If it costs R300 to make each article of model A and R200 to make each article of model B, write down an equation to represent the total cost, T, to manufacture x articles of model A and y articles of model B.

(2)

(8)

c) Draw on the graph a straight line that you would use to minimize the total production cost._____

_____(2)

d) Give the number of articles of each model that should be manufactured to ensure a minimum cost, and determine the minimum cost.

e) If the manufacturing cost is adjusted and it now costs the same to manufacture models A and
B, but it is not desirable to make more of model A than of model B, determine how many of
each should be manufactured to ensure minimum expenditure.

(3)

_____(4)

Given: A: $f(x) = 4^x$

a) Sketch A and A^{-1} on the same set of axes. Label all relevant points. (4)

