DEPARTMENT OF MATHEMATICS

GRADE 12

PAPER 1: LO 1 and LO 2
 EXAMINATION: Prelim 2010

INSTRUCTIONS:

- This examination paper has 6 pages in all.
- You will find a "Mathematics Formula Sheet" at the end of this exam.
- Answer all the questions logically and neatly. Show all your working. This will be to your advantage.
- Non-programmable calculators may be used, except in questions where this is expressly forbidden.
- Any given diagrams need not be redrawn.
- Answer all questions in your answer booklet. Use both sides of each page.
- Question 3, 6 and 8 is to be answered on the answer sheet provided in the answer booklet.
- If not specified, round all answers to two decimal places where necessary.

SECTION A

Question 1

[12 marks]

Solve for x :
a) $x^{2}-6 x=10(1-3 x)$
b) $\quad(x-1)(x-2) \leq 6$
(4)
c) $3\left(4^{2 x}\right)=14,2$

Question 2

[11 marks]
a) Simplify the following:
(1) $\log _{2} 4+\log _{2} \frac{1}{2}$
(2) $\frac{\log 3-\log 25}{\log 625-\log 9}$
b) Solve for x , without using a calculator:
$\log (x+3)-\log x=1$

Question 3

[14 marks]
Answer this question on the answer sheet provided in the answer booklet.
Given: $f(x)=\frac{5}{x-3}-1$
a) What kind of graph does f represent?
b) Write down the equations of the asymptotes of f.
c) Determine the intercepts with the axes.
d) Sketch the graph of f, clearly showing all relevant features of this graph.
e) Give the new equations after the following transformations:

1) $\quad f(x)$ reflected about the y-axis
2) $\quad f(x)$ translated 3 units to the right and 2 units up
a) Determine the following:
(1) $\lim _{h \rightarrow 2} \frac{h^{3}+h^{2}-6 h}{h^{2}-4}$
(2) $f^{\prime}(x)$ from first principles if $f(x)=2 x-4$
b) Use the rules of differentiation to determine the following:
(1) $f^{\prime}(x)$ if $f(x)=(2 x-3)^{2}$
(2) $\frac{d y}{d x}$ if $y=\sqrt{x^{3}}+\frac{2}{x^{2}}$

Question 5

[23 marks]

a) The terms 4, 9 and 14 form a sequence.

Determine:
(1) the $20^{\text {th }}$ term of the sequence
(2) the sum of the first 20 terms
b) Given that in the sequence $2 ; x ; y ; 9$ the first three terms form an arithmetic progression and the last three terms form a geometric progression, determine the values of x and y.
c) \quad Calculate $\sum_{k=4}^{20} 4.2^{k-1}$ (show all workings)
d) The midpoints of the sides of a square with sides $8 x \mathrm{~cm}$ are joined to form another square. This process is repeated indefinitely.
Calculate the sum of the areas of the squares that are found this way.

8x

SECTION B

Question 6

[19 marks]

Answer this question on the answer sheet provided in the answer booklet.

Let \boldsymbol{x} be the number of articles of model A and \boldsymbol{y} be the number of articles of model B which can be manufactured daily by a factory, subject to the following constraints:

$$
\begin{gathered}
x \geq 4 \\
y \geq 6 \\
x+y \geq 12 \\
5 x+4 y \leq 80 \\
2 y+x \leq 28
\end{gathered}
$$

a) Represent all the constraints on the graph paper provided.

Clearly indicate the feasible region.
b) If it costs R300 to make each article of model A and R200 to make each article of model B, write down an equation to represent the total cost, T , to manufacture x articles of model A and y articles of model B.
c) Draw on the graph a straight line that you would use to minimize the total production cost.
d) Give the number of articles of each model that should be manufactured to ensure a minimum cost, and determine the minimum cost.
e) If the manufacturing cost is adjusted and it now costs the same to manufacture models A and B, but it is not desirable to make more of model A than of model B, determine how many of each should be manufactured to ensure minimum expenditure.

The graphs of $f(x)=-(x+1)^{2}+4$ and $g(x)=x^{2}-4 x$ are shown. They intersect at A , the turning point of f, and B , the turning point of g.
a) Determine the length of CD.
b) Write down the maximum value of $f(x)$.
c) Determine the value of x for the length between $f(x)$ and $g(x)$ to be a maximum.
d) For which values of x is $f(x) . g(x)>0$?
e) Give a point where $f(x)$ and $g(x)$ will have the same gradient.

Question 8

[10 marks]

Answer this question on the answer sheet provided in the answer booklet.

Given: A: $f(x)=4^{x}$
a) Sketch A and A^{-1} on the same set of axes. Label all relevant points.
b) Determine a if $f(a)=8$.
c) Explain how you can use coordinates and transformation rules to determine b if $f^{-1}(8)=b$?

Question 9

[23 marks]

The graph f is defined by $y=-x^{3}+a x^{2}+b x+c$.
The line g is defined by $y=7 x+14$.
Turning point B has coordinates ($2 ; 0$).
A sketch graph of f and g is given below.

Find the following:
a) a, b and c
b) the length of $D E$
c) the coordinates of A
d) any points of inflection
e) the equation of the tangent to the curve f at E
f) Determine the value(s) of k such that $f(x)+k=0$ has one real root only.

Question 10

[11 marks]

The length of a rectangular storage basket with a drop-down lid is three times its width, x, and the total area is 450 square units.
a) Express the length in terms of x .
b) Show that the height, $h=\frac{225}{4 x}-\frac{3 x}{4}$
c) Show that the volume is given by,

$$
\begin{equation*}
V=\frac{1}{4}\left(675 x-9 x^{3}\right) \tag{3}
\end{equation*}
$$

d) Now, find the value of x that will give a maximum volume.

