

education

Department: Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 11

MATHEMATICS P1

.......

NOVEMBER 2007

MARKS: 150

1

T.

TIME: 3 hours

This question paper consists of 9 pages, 1 diagram sheet and a 1-page formula sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 10 questions. Answer ALL the questions.
- 2. Show clearly ALL calculations, diagrams, graphs, etc. which you have used in determining the answers.
- An approved scientific calculator (non-programmable and non-graphical) may be 3. used, unless stated otherwise.
- 4. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- Number the answers correctly according to the numbering system used in this ques-5. tion paper.
- Diagrams are NOT necessarily drawn to scale. 6.
- 7. It is in your own interest to write legibly and to present the work neatly.
- 8. An information sheet with formulae is attached.

QUESTION 1

1.1 Solve for *x* (correct to TWO decimal places where necessary):

1.1.1 (a)
$$(x+3)(x-1) = -x+1$$
 (4)

(b) Hence or otherwise, solve for x if
$$x^2 + 3x - 4 < 0$$
 (3)

$$1.1.2 x2 + 3x = 1 (5)$$

1.2 Solve simultaneously for *x* and *y* in the following system of equations:

$$x + y = 3$$
 and $2x^2 + 2y^2 = 5xy$ (9)

1.3 If
$$f(x) = x^2 - 2x$$
, show by completing the square that $f(x-1) = (x-2)^2 - 1$. (4)
[25]

QUESTION 2

2.1 Simplify:
$$\sqrt[3]{125x^6} - \sqrt[4]{81x^8} + \sqrt{36x^4}$$
 (4)

2.2 Given: $M = \sqrt{\frac{2}{2x+5}} + \frac{1}{2x}$

2.2.1	Show that M is a rational number if $x = 1,5$	(3)
2.2.2	Determine the values of x for which M is a real number.	(3)

2.3 Erin had to find the product of 2^{2007} and 5^{2000} and then calculate the sum of the digits of the answer. Erin arrived at an answer of 11.

Is she correct?	Show ALL the calculations to motivate your answer.	(5)
		[15]

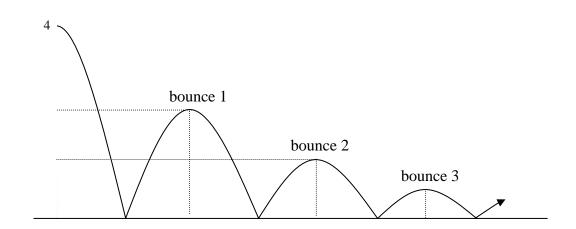
QUESTION 3

The number pattern 1, 5, 11, 19, ... is such that the sequence of 'second differences' is a constant.

3.1	Determine the 5 th number in the pattern.	(1)
3.2	Derive a formula for the n th number in the pattern.	(7)
3.3	What is the 100 th number in the pattern?	(2) [10]

QUESTION 4

A rubber ball is bounced from a height of 4 metres and bounces continuously as shown in the diagram below. Each successive bounce reaches a height that is half the previous height.



4.1	If the pattern of the maximum height reached during each bounce continues, what maximum height will the ball reach during the 6^{th} bounce?	(2)
4.2	Determine an algebraic expression for the maximum height reached in the n^{th} bounce.	(4)
4.3	After how many bounces will the ball reach a maximum height of $\frac{1}{512}$ metres?	(4)

[10]

(5)

(6)

QUESTION 5

5.1 After 4 years of reducing balance depreciation, an asset has a $\frac{1}{4}$ of its original value. The original value was R86 000.

Calculate the depreciation interest rate, as a percentage. (Correct your answer to 1 decimal place.)

- 5.2 Jabu invests a certain sum of money for 5 years. She receives interest of 12% per annum compounded monthly for the first two years. The interest rate changes to 14% per annum compounded semi-annually for the remaining term. The money grows to R75 000 at the end of the 5-year period.
 - 5.2.1 Calculate the effective interest rate per annum during the first year. (4)
 - 5.2.2 Calculate how much money Jabu invested initially.
- 5.3 The expenditure of the Department of Health (in billions of rands) is indicated in the following table. (We take 2003 as t = 0, 2004 as t = 1 and so on.)

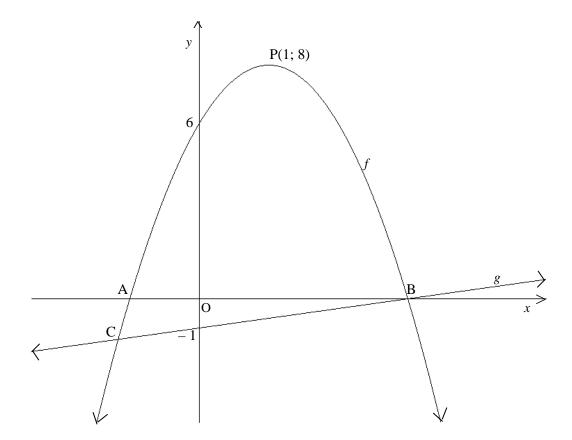
Year	2003	2004	2005	2006
Time (<i>t</i>), in years	0	1	2	3
Expenditure (<i>E</i>), in billions of rands	2	2,5	3	3,5

5.3.1	Plot the four data points in your answer book, as accurately as you can.	(2)
5.3.2	Make a conjecture about the relationship between the expenditure and time.	(1)
5.3.3	Use your conjecture to write down the equation of E as a function of t .	(2)
5.3.4	Use your equation to predict the expenditure of the Department of Health in 2010 (in billions of rands)	(1) [21]

QUESTION 6

Below is a sketch graph of parabola, f, and straight line, g. P(1; 8) is the turning point of f. f cuts the y-axis at (0; 6) and g cuts the y-axis at (0; -1). f and g intersect at B and C.

B is a point on the *x*-axis



6.1 Show that $f(x) = -2x^2 + 4x + 6$.	(6)
---	-----

6.2	Calculate the average gradient of $f(x)$ between $x = 1$ and $x = 3$.	(3)
6.3	Show that the equation of g is $g(x) = \frac{1}{3}x - 1$.	(3)
6.4	Calculate the coordinates of C.	(6)
6.5	If $h(x) = f(-x)$, explain how the graph of <i>h</i> may be obtained from the graph of <i>f</i> .	(2)
6.6	Write down the equation of <i>h</i> .	(2) [22]

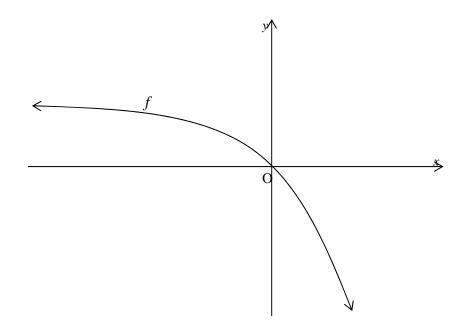
QUESTION 7

Given: $f(x) = \frac{8}{x-8} + 4$

7.1	Write down the domain of <i>f</i> .	(1)
7.2	For what value of x is $f(x) = 0$?	(2)
7.3	Determine the value of p , if A (0; p) lies on the graph of f .	(2)
7.4	Write down the equations of the asymptotes of f .	(2)
7.5	Draw a neat sketch graph of f , indicating the asymptotes and intercepts with the axes, on the diagram sheet provided.	(4) [11]

QUESTION 8

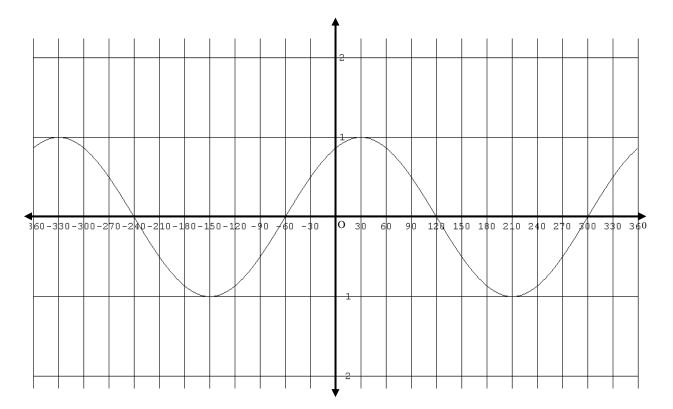
The graph of $f(x) = 1 + a \cdot 2^x$ (*a* is a constant) passes through the origin as shown below.



8.1	Show that $a = -1$.	(2)
8.2	Determine the value of $f(-15)$ correct to FIVE decimal places.	(2)
8.3	Determine the value of x, if P (x; 0,5) lies on the graph of f .	(3)
8.4	If the graph of f is shifted 2 units to the right to give the function h , write down the equation of h .	(2) [9]

QUESTION 9

Given the function $f(x) = \cos(x - 30^\circ)$ for $x \in [-360^\circ; 360^\circ]$.



Determine:

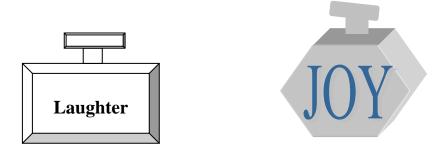
9.1 The period of the function g, if $g(x) = f(2x)$	(2)
---	-----

9.2 The range of the function
$$h$$
, if $h(x) = f(x) - 1$ (2)

9.3 The amplitude of the function q, if
$$q(x) = \frac{1}{2} f(x) + 2$$
 [6]

QUESTION 10

Two fragrances A and B are used to make the perfumes *Laughter* and *Joy*.



- You require 3 g of fragrance A and 4 g of fragrance B to produce 1 litre of *Laughter*. ☀
- One litre of Joy requires 9 g of fragrance A and 6 g of fragrance B.
- At least 3 litres of *Laughter* needs to be produced per week.

At the beginning of a particular week the company has 27 g of fragrance A and 30 g of fragrance B.

Let x and y be the number of litres of *Laughter* and *Joy* respectively that are produced per week.

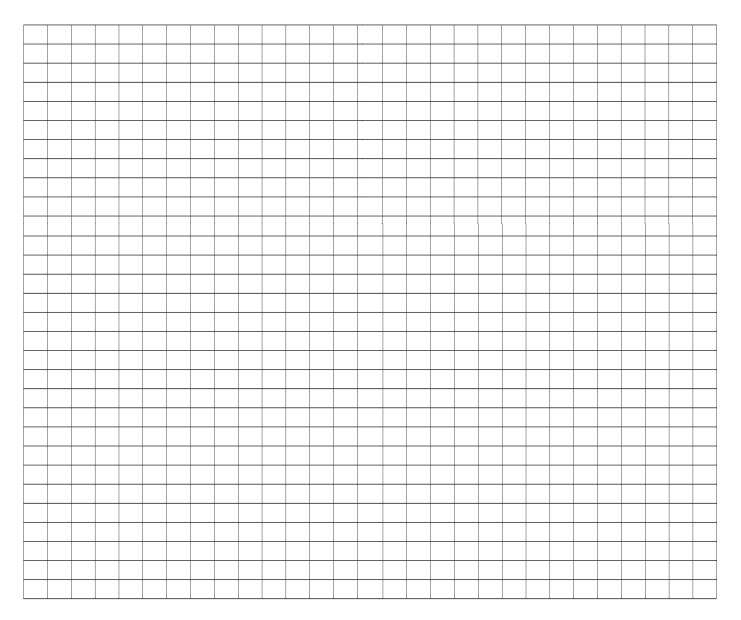
	TOTAL:	150
10.5	Calculate the maximum possible profit.	(2) [21]
10.4	Determine how many litres of each perfume must be produced in this week to ensure a maximum profit.	(4)
10.3	If the profit on 1 ℓ of <i>Laughter</i> is R30 and the profit on 1 ℓ of <i>Joy</i> is R50, express the profit, P, in terms of x and y.	(2)
10.2	Represent the constraints graphically on the graph paper provided and shade the feasible region.	(8)
10.1	State algebraically, in terms of x and y, the constraints that apply to this problem for this week.	(5)

NAME/EXAMINATION NUMBER:

DIAGRAM SHEET

QUESTION 10

10.2



INFORMATION SHEET: MATHEMATICS INLIGTINGSBLAD: WISKUNDE

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
A = P(1+ni)	A = P(1 - ni)
$A = P(1-i)^n$	$A = P(1+i)^n$
$\sum_{i=1}^{n} 1 = n$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
$\sum_{i=1}^{n} (a + (i-1)d) = \frac{n}{2} (2a + (n-1)d)$	
$\sum_{i=1}^{n} ar^{i-1} = \frac{a(r^{n} - 1)}{r - 1} ; \qquad r \neq 1$	$\sum_{i=1}^{\infty} ar^{i-1} = \frac{a}{1-r} ; -1 < r < 1$
$F = \frac{x\left[(1+i)^n - 1\right]}{i}$	$P = \frac{x[1 - (1 + i)^{-n}]}{i}$
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\mathbf{M}\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$
y = mx + c	$y - y_1 = m(x - x_1)$
$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$
$(x-a)^2 + (y-b)^2 = r^2$	

In *AABC*:

-

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cdot \cos A \qquad area \,\Delta ABC = \frac{1}{2} ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \alpha \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \alpha$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n} \qquad \partial^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

P(A or B) = P(A) + P(B) - P(A and B)

Copyright reserved