PHYSICAL SCI ENCES: PAPER I
MARKI NG GUIDELI NES
Time: 3 hours
150 marks

The marking guide is a working document prepared for use by teachers as they assess the Grade 11 externally set examinations.

There may be different interpretations of the marking guidelines but the teacher should keep as closely as possible to the suggested way of assessing. When in doubt, a teacher should check with another member of the cluster or with the relevant Assessment Specialist.

QUESTI ON 1

1.3 When a net (resultant) force acts on a body, the body will accelerate in
the direction of the force. \checkmark The acceleration is directly proportional to the net force and inversely proportional to the mass of the object.
1.4 $\quad F_{\text {net }}=m a \checkmark$
$-12800=1600 a \cong \checkmark$

$$
\begin{equation*}
\mathrm{a}=-8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \checkmark \tag{3}
\end{equation*}
$$

$=8 \mathrm{~m} \cdot \mathrm{~s}^{-2}$ against the motion
$1.5 \frac{86,6 \mathrm{~km}}{1 \mathrm{~h}}=\frac{86,6 \times 1000}{1 \times 60 \times 60 \checkmark}=24 \mathrm{~m} \cong \mathrm{~s}^{-1}$ (division by $3.6 \checkmark ; 1$ mark)

$$
1.6 \begin{gather*}
v_{f}^{2}=v_{i}^{2}+2 a \Delta x \\
0=24^{2}+2(-8)^{\checkmark} \Delta x \tag{4}\\
\Delta x=36 m
\end{gather*}
$$

\checkmark
1.7 The frictional force will be smaller ($F_{\text {fric }}=\mu_{k} F_{N}$)

The acceleration will be smaller $\left(F_{\text {net }}=F_{\text {fric }}=m a\right) \checkmark$
The distance will be greater \checkmark
$1.8 \quad 1.8 \quad v_{f}{ }^{2}=v_{i}{ }^{2}+2 a \Delta x$
$0=48^{2} \checkmark+2(-8) \Delta x$
$\Delta x=144 \mathrm{~m} \checkmark$
Getting the relationship correct
Q1.6 Q1.8
$\begin{array}{lllllll}\text { speed } & 24 \\ \text { stopping } & 36\end{array}$ and $\begin{array}{llll}48 \\ 144\end{array} \Rightarrow \quad \begin{aligned} & x 2 \\ & \\ & \end{aligned} \quad \checkmark 4$ distance

Remember this questions requires the use of equations of motion (not energy)
A conclusion like:
When the initial speed (velocity) doubles, the distance becomes $4 x$ more or "your stopping distance increases by 4 times as your speed doubles" \checkmark (1 mark)

A conclusion like:
Stopping distance α (speed) ${ }^{2}$ or stopping distance $=k$ (speed) ${ }^{2} \checkmark \checkmark$ (2 marks)

Explain "SPEED KILLS": Typical acceptable explanations:
More collisions \checkmark occur because increased speed increasing stopping distance so greatly or
More collisions occur at higher speeds \checkmark because increased speed increasing stopping distance so greatly

26 marks

QUESTI ON 2

2.1 Sum of the moments about $L=0 \checkmark$
$36000{ }^{〔} \times 40-R \times 60=0$
$\mathrm{R}=24000 \mathrm{~N}$
Sum of the vertical forces $=0 \checkmark$
$L+24000-36000=0 \checkmark$
$\mathrm{L}=12000 \mathrm{~N}$
2.2

Straight line $\checkmark \quad$ Negative slope \checkmark
This is for teachers. Learners are not required to present any reasons for the sketch graph they draw. They are expected to reason qualitatively. However suppose we let the distance of C from L be x then
"sum of the moments about $L=0$ " becomes
$36000 x-R x 60=0$ or $36000 x-60 R=0$
and "the sum of the vertical forces $=0$ " can be written as $L+R=36000$ (2)
From (1) $R=600 \mathbf{x}$ and substituting for R in (2) gives $L=-600 \mathbf{x}+36000$ This is the equation of the line in the sketch graph
When $\mathbf{x}=0$ the truck is over L and $L=36000 \mathrm{~N}$; when $L=0$; C is over $R, 60 \mathrm{~m}$ from L.

7 marks

QUESTI ON 3

3.1 The total linear momentum in a closed system will be conserved
(2)

$$
\begin{array}{ll}
3.2 \quad \mathrm{~m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=M V \\
& 3600 \times 20+800 \times(-35)=4400 \mathrm{~V} \\
\mathrm{~V}=10 \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { North } \checkmark \tag{4}
\end{array}
$$

3.3

$$
\begin{array}{ll}
\text { 3.3.1 } & \mathrm{F}_{\text {net }} \Delta \mathrm{t} \stackrel{\checkmark}{=} \mathrm{mv}-\mathrm{mu} \\
& \mathrm{~F}_{\text {net }}(0,005)=65(10)-65(20) \checkmark \\
& \mathrm{F}_{\text {net }}=-130000 \mathrm{~N} \\
& =130000 \text { South } \checkmark \tag{4}
\end{array}
$$

3.3.2 $\mathrm{F}_{\text {net }}(0,08)=50(10)-50^{\checkmark}(-35)$
$F_{\text {net }}=+28125 \mathrm{~N}$ North
$\begin{array}{lll}\text { 3.3.3 (a) } & \text { Truck driver } & \text { fatal } \\ & \text { Driver of the car } & \text { severe to critical }\end{array}$
(Note: Not necessarily fatal in spite of a much greater change in momentum than truck driver!)
(b) Air bags \checkmark

Air bags will increase the time it takes the passenger to come to rest, thus decreasing the net force on the passenger. \checkmark
Any other correct safety feature that reduces the force exerted on the passenger or driver.
E.g. Collapsible steering column, soft dashboard, etc.

QUESTI ON 4

4.1 What is the relationship between the current through a resistor and the potential difference across the resistor?
4.2

variable resistor
Complete circuit \checkmark Volmeter in parallel \checkmark Cells in series \checkmark
4.3 Linda is correct. The variable resistor is used to vary the potential difference across the fixed resistor. \checkmark The greater the variable resistor, the greater the potential difference across the fixed resistor.

4.4 The current

4.5 Temperature \checkmark
4.6 Take quick readings. Allow time for temperature to normalise between readings. \checkmark
4.7

Voltmeter (V)	Ammeter (A)
0,00	0,00
1,50	0,30
3,00	0,58
4,00	0,85
5,50	1,04
7,00	1,40

Each header with unit is one mark. Values on table completely correct are 2 marks. Up to 2 incorrect lines is 1 mark, else 0 .
4.8

Scale \checkmark

Points plotted correct \checkmark

All labels and units \checkmark

Alternately a graph of V against I is also correct.
4.9 The inverse of the resistance OR IF V is plotted against I the slope gives the resistance. $\checkmark \checkmark$
$\begin{array}{rl}4.10 & y=m x+c \\ I & =0,2 V \checkmark \checkmark\end{array}$
OR if V is plotted against I
$V=5 \mathrm{I} \checkmark \checkmark$
4.11 The current through a resistor is directly proportional to the potential difference across the resistor.
4.12 Paul measures the resistance of the new bulb as 40Ω at room temperature. $\checkmark \checkmark$
Paul calculates the resistance from the information ${ }^{\vee}$ on the bulb which refers to operating conditions, i.e. very high temperature. The difference is due to the fact that resistance is temperature dependent. \checkmark
(4)

27 marks

QUESTI ON 5

5.1

(3)
5.2. 4 before $1 \checkmark ; 1$ and 4 before 2 and $3 \checkmark ; 3$ before $2 \checkmark$
5.3 Pressure \checkmark - throughout the experiment the pressure on the air is atmospheric \checkmark (plus the pressure exerted by the mercury 'bead'). Alternately
Amount of gas - air cannot leave or enter the tube below the mercury 'bead'
5.4 "What is the relationship between the volume of the gas and the temperature of the gas?"

9 marks

QUESTI ON 6

6.1 A transformer is used to increase or decrease voltage

6.2
6.2.1 The magnetic field inside coil C changed \checkmark inducing a potential difference across the ends of the \checkmark conductor of which the coil is made in accordance with Faraday's Law, i.e. a potential difference or voltage is generated in a conductor while the magnetic field through the conductor changes
6.2.2 B soft iron core

C secondary coil
D primary coil
6.2.3 When an alternating current \checkmark passes through the primary coil, D, say, the coil produces a magnetic \checkmark field in one direction which collapses and then produces a field in the opposite direction when the direction of the current changes. These magnetic fields build up and collapse with a frequency of the alternating current, 50 Hz . The changing magnetic field is retained in the iron \checkmark core B. Since the iron core passes through the secondary coil C the magnetic field through the secondary coil is \checkmark continually changing. In accordance with Faraday's Law, a potential difference or voltage is generated in a conductor while the magnetic field through the conductor changes so a potential difference is produced in the secondary coil. \checkmark This potential difference alternates at a frequency of 50 Hz producing alternating current.
6.2.4 Transformers are used (any two) $\checkmark \checkmark$:

- In the national grid (country wide power distribution): at power stations \checkmark (to step up the voltage for transmission of electric power) at the end point municipalities (local authorities) \checkmark in towns and suburbs \checkmark to step down the voltage for use in homes and factories.
- In 'power supplies' \checkmark for devices like computers, sound amplifiers, electronic musical instruments \checkmark, toys \checkmark (model trains) ...
- In chargers \checkmark for cell phones, cameras \checkmark, shavers \checkmark, toothbrushes \checkmark, computers \checkmark, rechargeable batteries \checkmark, \ldots
- machinery and appliances that use electric motors: e.g. mines \checkmark, electric trains \checkmark
6.2.5 Advantages (in fact all the advantages of having electricity):

Makes possible

- the large scale efficient distribution of energy (using electricity)
- the wide scale use of household electrical appliances: stoves, dishwashers, vacuum cleaners, TV's, ...
- preservation and distribution of food by refrigeration
- climate control: air conditioners, heating,
- improved productivity through lighting - people can work and study at night, computers,
- improved communication, cell phones, phones,
- any other
6.2.6 Disadvantages
- waste disposal of the millions of tons of discarded cell phone chargers, computers,
- the large transformers used in the national grid can be dangerous
o if not properly maintained they are known to have exploded,
o the unwary have been electrocuted and
o transformers need to be made inaccessible to the general public
- They can be unsightly
- They take up space that could be used for agriculture, living space, ...
- Though very efficient they do generate heat and contribute to global warming,
- Any other
6.2.7 Give opinion and connect to a general justification: (2 marks) e.g. Transformers are an advantage \checkmark since they enable the large scale, wide spread and efficient use of energy that makes possible the improvement of the quality of human life. \checkmark
Addresses the negative: (1 mark)
The disadvantages of the use of transformers are insignificant in comparison with the advantages and many of the disadvantages can be addressed like their unsightly appearance, e.g. they can be disguised as small cottages.

QUESTI ON 7

7.1

7.1.1 The displacement of the particles in the medium is parallel to the direction of propagation of the wave
7.1.2 (a) Amplitude
(1)
(b) A_{2} or A_{6}
(1)
7.1 .3 (a) A_{3}
(1)
(b) $0,8 \mathrm{~m}$
(1)
(c) Time for wave to move as shown from sketches

A to $D=0125 \mathrm{~s}$
Distance wave moves from A to $D=0,25 \lambda$
Time to generate a wave (period) $=4 \times 0,25 \mathrm{~s} \checkmark=0,5 \mathrm{~s} \checkmark$
(Not necessary to show working)
(d) $f=1 / T \quad \checkmark=1 / 0,5 \mathrm{~s}=2 \mathrm{~Hz} \checkmark$
(e) $v=f \lambda=2 \times 0,8 \checkmark=1,6 \mathrm{~m} \cdot \mathrm{~s}^{-1} \checkmark$
$7.2 \quad \checkmark \quad \checkmark \quad \checkmark$
7.2.1 They must have the same frequency, wavelength and amplitude
7.2.2

(2)

Diagram \checkmark
Both labels \checkmark
$\begin{array}{ll}7.2 .3 & \text { (a) } 102 \mathrm{~cm} \\ & \text { (b) } v=\mathrm{f} \lambda=587 \times^{\vee} 1,02=598,74^{\vee} \mathrm{m} \cdot \mathrm{s}^{-1}\end{array}$

QUESTI ON 8

8.1 The units: $\mu \mathrm{F} \checkmark$
8.2 $Q=C V \checkmark=180 \times 10^{-6} \checkmark \times 100=0,018 C \checkmark$
8.3 Directly proportional \checkmark
8.4 Capacitance \checkmark
8.5 W = QV therefore the energy stored \checkmark
8.6 Energy $=$ area $=1 / 2 \times 100 \checkmark \times 0,018 \checkmark=0,9 \mathrm{~J} \checkmark$

10 marks

QUESTI ON 9

9.1
9.1.1 D
9.1.2 A
9.1.3 C
9.1.4 B
9.2
9.2.1 Semimetals have some electrons in the conduction band at normal temperatures. The band gap is small.
9.2.2 Metals have a partially filled conduction band. Valence band and conduction band touch or overlap.
9.2.3 Non-metals have empty conduction bands and filled valence bands. The band gap is large.
9.3
9.3.1 A
9.3.2 Semi-conductor is doped by element with 5 valence electrons
9.3.3 B^{\vee} lights up. $\mathrm{B} 2^{\vee}$ does not light up. A diode is a^{\checkmark} rectifier. Conventional current flows through a diode in one direction only, in the direction of the 'arrow'.

OPTI ONAL QUESTI ONS

QUESTI ON 10

10.1 R and R_{2} are in parallel with R_{1} and R_{3}
(1)
10.2 To determine resistance of unknown resistor
10.3 Galvanometer: measures very small currents
$10.4 \mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{3}}=\frac{650 \mathrm{x}^{\checkmark} 400}{920}=282,6 \Omega \checkmark$

5 marks

QUESTI ON 11

11.1 $F=\checkmark \frac{\mathrm{kQ}_{1} \mathrm{Q}_{2}}{\mathrm{r}^{2}}=\frac{9 \times 10^{9} \times 4 \times 10^{-6} \times 6 \times 10^{-6}}{(0,03)^{2}}=240 \checkmark \mathrm{~N}$ attractive Substitution \checkmark
11.2 240 N \checkmark attractive
11.3

$$
\begin{align*}
\text { Res }^{2} & =240^{2}+240^{2} \checkmark \\
& =115200 \\
\text { Res } & =339 \mathrm{~N} \checkmark \tag{3}
\end{align*}
$$

11.4 $\quad E=\frac{F}{q} \checkmark$
$=\frac{339}{4 \times 10^{-6}} \checkmark$
$=8.5 \times 10^{7} \mathrm{v} \cdot \mathrm{m}^{-1} \checkmark$

10 marks

Total: 150 marks

