

GRADE 10 EXEMPLAR EXAMINATION 2006

PHYSICAL SCIENCE: PAPER 1 PHYSICS FOCUS

MEMORANDUM

Time: 1¹/₂ hours

100 marks

QUESTION 1

1.9	Time /s 0 2 4 6 8	10
	• Unit is incorrect: m/s ⁻¹	(3)
	• Calculation $a = \frac{9}{40}$ km.h ⁻¹ .s ⁻¹ mathematical mistake	
	constant)	
	 final velocity, v, is 200 not 40 final velocity, v is 40 (or even 45, easier to read and acceleration is 	
1.8	• Initial velocity usis zero not 40	
1.0	$\overline{60x60}$	
1.7	$\frac{40m}{1s} = \frac{40x10^{-3}}{1} = 144 \text{ km.h}^{-1}$	
1.6	1 kilometer = 1000 m and 1 hour = $60x60 = 3600 \text{ seconds}$	(2)
	accelerating as the driver changes gears	(1)
1.5	Car stops accelerating for half a second (constant speed) before it continues	
1.4	Gears	(1)
1.3	Staying the same	(1)
1.2	20 s	(1)
1.1	45 m.s^{-1}	(1)

 $s = ut + \frac{1}{2}at^{2}$ = 0 + $\frac{1}{2}(4,5)(10)^{2}$ (Remember to use $\frac{45}{10}$; since it is a straight line, take value easiest to read) = 222,5 m (3)

36

81

144

9

0

Graph:

Position /m

(5)

222.5

QUESTION 2

2.1	The petrol car: it stops in the shortest time interval (or distance).	(2)
2.2	Difference in area = $\frac{1}{2}(6)(40) - \frac{1}{2}(5)(40) = 20$ m. Or $\frac{1}{2}(1)(40) = 20$ m.	(3)

2.3 The hybrids kinetic energy is used to charge the batteries which are used to power the car later. This saves fuel, reduces greenhouse gas emissions and reduces global warming by not using brakes which get hot and heat the surroundings. (1)

2.4
$$\Delta E_{k} = \frac{1}{2}mv^{2} - \frac{1}{2}mu^{2}$$
$$= \frac{1}{2}(1500)(40)^{2} - 0$$
$$= 1\ 200\ 000\ J$$
(4)

QUESTION 3

3.1 Mechanical energy =
$$E_p + E_k$$

= mgh + $\frac{1}{2}mv^2$
= 0 + $\frac{1}{2}(1500)(10)^2$
= 75 000 J (3)

3.2 Mechanical energy =
$$E_p + E_k$$

= mgh + ¹/₂mv²
= (1500)(10)(3,5) + ¹/₂(1500)(20)²
= 352 500 J (5)

3.3 Change in mechanical energy =
$$352\ 000 - 75\ 000 = 277\ 500\ J$$
 (2)

QUESTION 4

4.1
$$R = \frac{V}{I} = \frac{300}{100} = 3 \Omega$$
 (3)
4.2 $Q = It = (100)(2x60) = 12\ 000\ C$ (4)

QUESTION 5

Possible pro's and con's

5.1.1

HYBRID

pro	con
Reduced NO ₂ emissions Cheaper fuel costs Braking system charges battery – energy conserved = less heating through braking, less fuel used	Initially cost more Smaller; Slower Weight and space required for batteries - reduced boot size Replacement of batteries Needs to be charged Regularly Shorter range Charged using electricity powered by coal burning power stations = SO ₂ emissions because of space
	1 1

PETROL

pro	con
More power Faster Lighter More convenient Lower initial cost Much greater range	CO ₂ and NO ₂ emission Acid rain Heat from braking

5.2.2

Page 6 of 11

Use the following rubric to mark question 5 as a whole: Generic rubric for assessing an argument

Marks	Description	
82- 100% (14-16)	To score 14 both recommendations must form a coherent meaningful whole, link salesman to petrol car and link business woman to hybrid, and be substantiated using 2 arguments as shown in the possible answers above; To score 16 each substantiated with at least 3 arguments	
70- 81% (12-13)	To score 12 arguments supporting one of the recommendations must form a coherent meaningful whole. To score 12 link at least 1 person to one car e.g. Business woman to hybrid (substantiated using 2 arguments as shown in the possible answers above; for 13 substantiate with at least 3 arguments as shown in the possible answers above)	** **
60- 69% (10-11)	To score 10 links four (quadruplets) issues e.g. (hybrid[] pollutes with SO ₂ [] during charging[] because electricity from coal powered power station[]) or (hybrid[] conserves energy[] during braking[] by charging the battery[]) To score 11 links at least two quadruplets No need to link to person	~~ ;vi
50- 59% (9-10)	To score 9 links three (triplets) issues e.g. (petrol car has a greater range and this is an advantage) or (hybrid conserves energy during braking To score 8 make links at least two triplets No need to link to person	·••••
40- 49% (7-8)	To score 7 links two issues (in pairs) e.g. (petrol carl has greater rangel) or (greater rangel is an advantagel). To score 8 links at least 2 pairs. No need to link to person	••••••
30- 39% (5-6)	Supplies bits of unconnected information that makes no further sense. To score 6: credit for listing up to 6 unconnected pros and/or cons	••••••
0-29% (0-4)	Supplies bits of unconnected information that makes no further sense. To score 4: credit for listing up to 4 unconnected pros and/or cons	••••
		(16)

QUESTION 6

<i>с</i> 1	1	(1)
6.1	$\mu =$	(1)
	- S1n <i>c</i>	~ /

6.2
$$\mu = \frac{1}{\sin 48.6^{\circ}} = 1.33$$
 (2)

6.4

6.5

6.5.1	total internal reflection	(1)
6.5.2	bends/refracts	(1)

7.1	Like c	harges repel	(2)
	7.2.1	nature of the forces (attract, repel)	(2)
	7.2.2	charges on the rods	(2)

7.3

	Suspended rod	test rod (also suspended)	Observation	Explanation
1	pvc-rod	pvc- rod	repulsion	Like charges on rods
2	glass-rod	pvc- rod	attraction	Unlike charges on rods
3	knitting needle	pvc-rod	attraction	Knitting needle is not charged and charged glass rod induces opposite charge in end of knitting needle close to rod
4	pvc-rod	glass-rod	attraction	Unlike charges on rods
5	glass-rod	glass-rod	repulsion	Like charges on rods
6	knitting needle	glass-rod	attraction	Knitting needle is not charged and charged pvc-rod induces opposite charge in end of knitting needle close to rod
7	pvc-rod	knitting needle	attraction	Knitting needle is not charged and charged pvc-rod induces opposite charge in end of knitting needle close to rod
8	glass-rod	knitting needle	attraction	Knitting needle is not charged and charged glass-rod induces opposite charge in end of knitting needle close to rod
9	knitting needle	knitting needle	nothing happens	Neither of knitting needles have been charged by rubbing because they are earthed by contact

(12)

like charges repel unlike charges attract knitting needles cannot be charged by friction (rubbing) charged objects attract uncharged objects

any three (3)

7.4

This question can either be marked by using a check list or a rubric: If a rubric is used, 7.3 and 7.4 will be marked with the rubric and add up to 15 marks

Marks	Description	
80- 100% (13-15)	To score 11, links, on a table , three pieces of information (a single triplet) e.g. (identically charged PVC rods repel) to explanation i.e. – like charges repel and the conclusion – like charges repel To score 15 links 4 conclusions in the above way.	
70- 79% (11-12)	To score 11, links, on a table , three pieces of information (a single triplet) e.g. (identically charged PVC rods repel) to explanation i.e. – like charges repel and the conclusion – like charges repel To score 12 links two conclusions in the above way	
60- 69% (10)	To score 10, links, on a table , three pieces of information (a single triplet) e.g. (identically charged PVC rods repel) to explanation i.e. – like charges repel	~~. %
50- 59% (8-9)	To score ,9 links, on a table , two pieces of information (three pairs) e.g. (identically charged PVC rods repel)	``````
40- 49% (7)	To score 7, links, on a table , two pieces of information (a sigle pair) e.g. (identically charged PVC rods repel)	••••••
30- 39% (5-6)	Supplies bits of unconnected information that makes no further sense. To score 6: credit for listing up to 6 pieces of correct but unconnected information e.g. a correct column heading, an observation, and so on	••••
0-29% (0-4)	Supplies bits of unconnected information that makes no further sense. To score 4: credit for listing up to 4 pieces of correct but unconnected information e.g. a correct column heading, an observation, and so on	•••••

does not signify a mark but a piece of the information required

					Levels of co	gnitive deman	d targeted by	the questions	
Question	L01	LO2	LO3	1	2	3	4	5	6
				knowing	understanding	applying	analysing	synthesising	evaluating
1.1		1			1				
1.2		1			1				
1.3		1			1				
1.4		1			1				
1.5		1				1			
1.6		2				2			
1.7		3				3			
1.8		4					4		
1.9	5	3			1	4	1	2	
2.1		2				1		1	
2.2		3					3		
2.3		1						1	
2.4		4				3	1		
3.1		3					3		
3.2		5					5		
3.3		2			2				
4.1		3			3				
4.2		4			4				
4.3		1					1		
5.1							8		
5.2.1			16					2	2
5.2.2								2	2
6.1		1		1					
6.2		2			2				
6.3		2					2		
6.4.1		3					3		
6.4.2		3					3		
6.5.1		1			1				
6.5.2		1			1				
7.1	2						2		
7.2	4						4		
7.3	12							12	
7.4	3							3	
total	26	58	16	1	18	14	40	23	4
total					7	3		27	7
aim	30	50	20		6	0		40)
grand t	otal		100						

Page 11 of 11

KINEMATICS	ENERGY
v = u + at	W = Fs
$s = ut + \frac{1}{2}at^2$	$E_k = \frac{1}{2}mv^2$
$v^2 = u^2 + 2as$	$E_p = mgh$
$s = \left(\frac{u+v}{2}\right)t$	$\mathbf{P} = \frac{W}{t}$
ELECTRICITY	OPTICS
ELECTRICITY Q = It	OPTICS $\mu = \frac{1}{1}$
ELECTRICITY $Q = It$ $R = \frac{V}{T}$	OPTICS $\mu = \frac{1}{\sin c}$
ELECTRICITY Q = It $R = \frac{V}{I}$	OPTICS $\mu = \frac{1}{\sin c}$ $n_i \sin i = n_r \sin r$

FORMULA SHEET