Name: \qquad
Subject: Euclidean Geometry: Circles
Class: \qquad

Total Marks: 67

Question 1: True/False [2]

Any four general points in the Cartesian plane are given.
No more than any two of these points lie in a straight line.
The four points are joined by line segments to form a quadrilateral.
Any quadrilateral thus formed will be a cyclic quadrilateral.

TRUE

FALSE

Question 2 refers to the following graphic

Figure 1: 1012
Question 2: True/False [7]
Mathematics - LO 3 : AS 2
In this figure: \mathbf{O} is the centre of the circle.
$\hat{\mathrm{O}}_{2}=176^{\circ}$
$\hat{\mathbf{P}}=y$
$\hat{\mathbf{R}}=3 y$
The size of $\hat{\mathbf{R}}$ will then be equal to 68°.
TRUE
FALSE

Question 3 refers to the following graphic

Figure 2: 1051

Question 3: Multiple Choice [6]

In this sketch, QPV is a common tangent to the two escribed circles.
Which of the following is necessarily true?

A $T R \| Q P V$

B $S M / \mid Q P V$

C \quad TR || SM

D All of the above.

Question 4 refers to the following graphic

Figure 3: 1007
Question 4: Multiple Choice [5]
Mathematics - LO 3 : AS 2
In this figure: $\quad \mathrm{CE}=\mathrm{DE}$

$$
C \hat{C} D=28^{\circ}
$$

Then:
$\mathrm{A} \hat{\mathrm{B}} \mathrm{E}=\ldots$
A 28°
B
152°

C
76°
D
104°

Question 5 refers to the following graphic

Figure 4: 1009

Question 5: True/False [4]

Mathematics - LO 3 : AS 2
In this figure: CDE is a tangent to the circle.
BF || CDE
Δ BDF will then be an isosceles triangle.

TRUE
FALSE
Question 6 refers to the following graphic

Figure 5: 1075

In this sketch, $\hat{\mathbf{A}}=\ldots$

Question 7 refers to the following graphic

Figure 6: 1010
Question 7: Socrates [6]
In this sketch: $\hat{\mathbf{A}}=\left(x+40^{\circ}\right)$

$$
\hat{\mathrm{O}}_{1}=3 x
$$

Therefore, the magnitude of $\hat{\mathbf{A}}$ is ...
Type in just the value of the degree
\square
Question 8 refers to the following graphic

Figure 7: 1004

Question 8: Socrates [2]

Mathematics - LO 3 : AS 2
In this figure: EB is a diameter of the circle.
ABC is a tangent to the circle.

$$
\mathrm{D} \hat{\mathrm{~B}} \mathrm{C}=72^{\circ}
$$

The size of \hat{E} will be equal to ...
\square

Figure 8: 1014

Question 9: Socrates [2]

Mathematics - LO 3 : AS 2
In this sketch, $\mathbf{F} \hat{\mathbf{B}} \mathbf{A}$ is an exterior angle of the cyclic quadrilateral $\mathbf{A B C D}$.
Therefore:
Angle FBA = Angle ...
Type only the letters naming the angle.
\square
Question 10 refers to the following graphic

Figure 9: 1022

Question 10: Cloze [7]

Mathematics - LO 3 : AS 2
In this figure: \mathbf{O} is the centre of the circle.
$A B$ is a diameter of the circle.
AED and CE are tangents to the circle.
$\hat{D}=57^{\circ}$
Then:
CÂD = (Ans. 1);
\triangle AEC is (Ans. 2);
$\mathbf{C E D}=($ Ans. 3$)$.

1	

3
$\rightarrow 57^{\circ}>3^{\circ} \quad>6^{\circ}$

Question 11 refers to the following graphic

Figure 10: 1057

Question 11: Cloze [8]

Mathematics - LO 3 : AS 2
In this sketch: WT || SU
WU and UT are equal chords.

Complete the following proof that $\mathbf{S U}$ is a tangent to the circle:

$$
\begin{array}{ll}
\hat{\mathbf{P}}_{1}=\hat{\mathbf{P}}_{2} & \text { [reason: (Ans. 1)] } \\
\hat{\mathbf{P}}_{2}=\hat{W}_{2} & \text { [reason: (Ans. 2)] } \\
\therefore \text { SU is a tangent. } & \text { [reason: (Ans. 3)] }
\end{array}
$$

Question 12 refers to the following graphic

Figure 11: 1067

Question 12: Cloze [6]

Mathematics - LO 3 : AS 2
In this sketch: AEC is a diagonal of parallelogram ABCD.
PEF is a straight line.

$$
\hat{\mathrm{C}}_{1}=x
$$

Then:

$$
\begin{array}{ll}
\hat{\mathbf{P}}_{1}=\hat{\mathrm{C}}_{1}=x & \text { [reason: (Ans. 1)] } \\
\hat{\mathrm{A}}_{2}=\hat{\mathrm{C}}_{1}=x & \text { [reason: (Ans. 2)] } \\
\hat{\mathbf{P}}_{1}=(\text { Ans. 3) }=x & \text { [reason: alt. } \angle ' \mathrm{~s} ; \mathbf{A D} \| \mathbf{B C}]
\end{array}
$$

\therefore ABFE is a cyclic quadrilateral. [reason: (Ans. 4)]

1	

3 品
\rightarrow ext. \angle equal to opp. int. \angle of cyclic quadrilateral DCEP

- \hat{F}_{2}
- \hat{A}_{1}
- \hat{F}_{1}
\rightarrow ext. \angle of ABFE is equal to opp. int.
- one chord subtends equal \angle 's
- opp. int. \angle 's of ABFE are suppl. \angle of ABFE

Question 13 refers to the following graphic

Figure 12: 1013

Question 13: True/False [5]

In this figure: RU is the diameter of the circle.
ST is a tangent to the circle.

$$
\hat{\mathbf{R}}=36^{\circ}
$$

The size of $\hat{\mathbf{T}}$ will then be equal to $\mathbf{1 8}^{\circ}$.

TRUE
FALSE

Question 14 refers to the following graphic

Figure 13: 1019

Question 14: Multiple Choice [4]

Mathematics - LO 3 : AS 2
In this figure: CBA and CDE are tangents to the circle.

If $\hat{\mathrm{C}}=42^{\circ}$, then $\hat{\mathbf{F}}=\ldots$

A $\mathbf{4 2}^{\circ}$
B 69°
C 159°

D 138°

If the radius of a circle bisects a chord of that circle, then the radius is ... to the chord. Type in just the correct word.
\square

