XT - MATHS Grade 12

Subject: Euclidean Geometry: Circles Date: 2010/06/29

Total Marks: 67

1. FALSE

Explanation: The quadrilateral formed must satisfy at least one of the following criteria for it to be cyclic:

- one pair of opposite angles of the quadrilateral must be supplementary;
 any exterior angle of the quadrilateral must be equal to the opposite interior angle;
- any one of the lines forming a side of the quadrilateral must subtend equal angles
 at the opposite vertices formed by another side adjacent to the first and one of the

diagonals of the quadrilateral.

2. FALSE 7

Explanation: $\hat{O} = 360^{\circ} - 176^{\circ}$ [revolution]

Explanation:
$$\hat{O}_1 = 360^{\circ} - 176^{\circ}$$
 [revolution]
$$= 184^{\circ}$$

$$\hat{Q} = \frac{1}{2} \times \hat{O}_2$$
 [\angle at centre = 2 × \angle on circumference]
= $\frac{1}{2} \times 176^{\circ}$
= 88°

Now ...

$$\hat{P}+\hat{Q}+\hat{R}+\hat{O}_1=360^\circ$$
 [int. \angle 's of any quadrilateral] $y+88^\circ+3y+184^\circ=360^\circ$ $4y+272^\circ=360^\circ$ $4y=88^\circ$ $y=22^\circ$

Therefore ...

$$\hat{R} = 3y$$
$$= 3 \times 22^{\circ}$$
$$= 66^{\circ}$$

3. C

Explanation: Let $\hat{QPR} = x$.

Therefore:

$$\hat{\mathbf{T}} = x$$
 [tangent QP-chord RP]

$$\hat{QPR} = \hat{VPS}$$
 [vert. opp. \angle 's]

Therefore:

 $\hat{\mathbf{M}} = x$ [tangent PV-chord PS]

Therefore:

$$\hat{\mathbf{T}} = \hat{\mathbf{M}}$$

Therefore, the alternate angles are equal which means that they must lie between parallel lines.

Thus:

If $RT \parallel QPV$, then \hat{R} and \hat{QPR} would need to be equal. There is no way of proving these angles equal.

If $MS \parallel QPV$, then \hat{S} and $V\hat{P}S$ would need to be equal. There is no way of proving these angles equal.

4. D 5

Explanation: CE = DE [given]

$$\therefore \hat{C} = \frac{1}{2} \Big[180^{\circ} - \hat{CED} \Big]$$
 [int. \angle 's of isosc. \triangle CED]
$$= \frac{1}{2} \Big[180^{\circ} - 28^{\circ} \Big]$$
$$= \frac{1}{2} \times 152^{\circ}$$
$$= 76^{\circ}$$

Now ...

$$E\hat{B}D = \hat{C}$$
 [both subtended by chord DE]
= 76°

Therefore:

$$A\hat{B}E = 180^{\circ} - E\hat{B}D$$
 [supplementary \angle 's]
= $180^{\circ} - 76^{\circ}$
= 104°

5. TRUE

Explanation: $\hat{CDB} = \hat{DBF}$

[alt. ∠'s; BF || CDE]

But ...

 $\hat{CDB} = \hat{F}$

[Theorem: tangent CDE-chord BD]

Therefore ...

$$D\hat{B}F = \hat{F}$$

This means that BD = FD.

Δ BDF will therefore be an isosceles triangle.

6. D

2

Explanation:
$$\hat{C}_{\underline{1}}$$
: $\hat{A} = \hat{C}_{\underline{1}}$

[int. ∠ equal to opp. ext. ∠ of cyc. quad. ABCD]

 \hat{C}_2 : $\hat{A} + \hat{C}_2 = 180^{\circ}$ [opp. \angle 's of cyc. quad. ABCD are suppl., not equal]

 $\hat{\mathbf{B}}_1$: $\hat{\mathbf{B}}_1$ is not an opposite exterior angle to $\hat{\mathbf{A}}$, as they share the common arm ABF.

 \hat{D}_1 : \hat{D}_1 is not an opposite exterior angle to \hat{A} , as they share the common arm ADH.

7. 96° 96

6

Explanation:
$$\hat{O}_2 = 360^{\circ} - 3x$$
 [revolution]

And ...

$$\hat{O}_2 = 2\hat{A}$$
 [major arc BC subtends centre \hat{O}_2 and circumference \hat{A}]

Therefore:

$$360^{\circ} - 3x = 2(x + 40^{\circ})$$

$$\therefore 360^{\circ} - 3x = 2x + 80^{\circ}$$

$$\therefore 280^{\circ} = 5x$$

$$\therefore 56^{\circ} = x$$

Now:

$$\hat{A} = (56^{\circ} + 40^{\circ})$$
= 96°

8. 72°

72 degrees

2

Explanation: As $D\hat{B}C$ is the angle between the tangent and the chord and \hat{E} is the angle in the alternate segment of the circle, \hat{E} will be equal to \hat{DBC} .

Therefore:

$$\hat{\mathbf{E}} = 72^{\circ}$$

9. ADC CDA **ADG** GDA 2

Explanation: The exterior angle of a cyclic quadrilateral is equal to the opposite interior angle of the cyclic quadrilateral.

> BĈD, BÂD, ABC and ADC are all interior angles of ABCD. The only angle opposite FBA is ADC.

10. (1) 33°

7

8

6

- (2) an isosceles triangle
- $(3) 66^{\circ}$

Explanation: (1) $\hat{ACB} = 90^{\circ}$

[subtended by diameter]

[supplementary ∠'s]

Now ...

$$\hat{CAD} = 180^{\circ} - 90^{\circ} - \hat{D}$$

[int. ∠'s of right-angled triangle]

$$= 180^{\circ} - 90^{\circ} - 57^{\circ}$$

 $= 33^{\circ}$

(2)
$$EA = EC$$

[tangents from same point (E)]

Therefore:

Δ AEC is isosceles

[base ∠'s are equal]

(3)
$$\hat{CED} = \hat{ACE} + \hat{CAE}$$

[ext. \angle of \triangle AEC]

= 66°

11. (1) WU = UT

- (2) UT subtends equal ∠'s
- (3) converse of tangent-chord theorem

Explanation: (1) $\hat{P}_1 = \hat{P}_2$

[subtended by equal chords WU and UT]

(2) $\hat{P}_{2} = \hat{W}_{2}$

[UT subtends equal ∠'s on circumference]

 $(3) \hat{\mathbf{W}}_{2} = \hat{\mathbf{U}}_{1}$

[alternate ∠'s; WT || SU]

From all the above: $\hat{\mathbf{U}}_{1} = \hat{\mathbf{P}}_{1}$

Therefore:

SU is a tangent.

[converse of tan-chord theorem]

- **12.** (1) ext. ∠ equal to opp. int. ∠ of cyclic quadrilateral DCEP
 - (2) alt. ∠'s; CD || AB
 - (3) $\hat{\mathbf{F}}_{2}$
 - (4) ext. ∠ of ABFE is equal to opp. int. ∠ of ABFE

Explanation: (1) $\hat{P}_1 = \hat{C}_1 = x$ [ext. \angle of cyc. quad. DCEP is equal to opp. int. \angle of DCEP]

(2)
$$\hat{A}_2 = \hat{C}_1 = x$$
 [alternate \angle 's; DC || AB]

- (3) $\hat{P}_1 = \hat{F}_2 = x$ [alternate \angle 's; AD || BC]
- (4) From (1), (2) and (3): $\hat{A}_2 = \hat{F}_2$

Thus, the exterior angle of ABFE is equal to the opposite interior angle of ABFE.

Therefore, ABFE is a cyclic quadrilateral.

13. TRUE

5

Explanation: $R\hat{S}U = 90^{\circ}$

> $U\hat{S}T = \hat{R}$ [Theorem: tangent ST-chord SU]

 $= 36^{\circ}$

 $T\hat{U}S = 126^{\circ}$

 $\hat{T} = 180^{\circ} - 126^{\circ} - 36^{\circ}$ [sum int angles of Δ RST]

 $= 18^{\circ}$

As with all geometry riders, there are many ways of answering the question. This is probably the shortest.

[∠ subtended by diameter RU]

14. B

4

Explanation: CB = CD

[tangents from same point C]

∴
$$\hat{CDB} = \frac{1}{2} \left[180^{\circ} - \hat{C} \right]$$
 [int. ∠'s of isosc. $\triangle CDB$]

 $=\frac{1}{2}[180^{\circ}-42^{\circ}]$

$$= \frac{1}{2} \times 138^{\circ}$$

= 69°

Now:

$$\hat{\mathbf{F}} = \mathbf{C}\hat{\mathbf{D}}\mathbf{B}$$

[\(\) between tangent CDE and chord BD]

= 69°

15. perpendicular

1

Explanation: The converse of this theorem states:

If the radius and a chord of a circle are perpendicular to each other,

then the radius will bisect that chord.

15 Questions, 5 Pages