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1. TRUE 2
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Explanation:

2. FALSE 3

For quadratic inequalities, we must use a number line to determine whether the interval(s) we are looking 
for lies between or beyond the critical values.

                 x2 ≤≤≤≤ 9        

                                                x2 - 9 ≤≤≤≤ 0

 (x - 3)(x + 3) ≤≤≤≤ 0

If we substitute a number less than -3 into the given inequality, the product of the two brackets will be 
positive.
If we substitute a number between -3 and 3 into the given inequality, the product of the two brackets will 
be negative.
If we substitute a number greater than 3 into the given inequality, the product of the two brackets will 
again be positive.

The product of the two brackets must be negative or zero; hence the solution is -3 ≤≤≤≤ x ≤≤≤≤ 3.

Explanation:

3. A 4

   2x2 + x - 1 < 0
(2x - 1)(x + 1) < 0

If we substitute a number less than -1 into the given inequality, the product of the two brackets will be 
positive.
If we substitute a number between -1 and ½ into the given inequality, the product of the two brackets will 
be negative.
If we substitute a number greater than ½ into the given inequality, the product of the two brackets will 
again be positive.
The product of the two brackets must be negative; hence the solution is -1 < x < ½.

Explanation:

4. A 5

p is a root, therefore:  x = p
The roots of this equation are …
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Therefore …

Explanation:
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5. A 6

  

Taking the square root on both sides :
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                        Therefore:

                              

                or
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Here's another route you could have tried:

                            (x2 - 4)2 = 9x2

                     x4 - 8x2 + 16 = 9x2

                   x4 - 17x2 + 16 = 0
                 (x2 - 16)(x2 - 1) = 0
  (x - 4)(x + 4)(x - 1)(x + 1) = 0
    x = 4,  x = -4,  x = 1,  x = -1 

Explanation:

6. 0; 2
2; 0

2

     or    
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0 2 0
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Explanation:

7. 0,19;  -0,86
-0,86;  0,19

5

or
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Explanation:
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8. 1; 0
0 ; 1
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     Therefore …

                             or   0 1x x= == == == =

Explanation:

9. -1
- 1

3

Rewrite the equation as:

Taking the cube root :

3
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Explanation:

10. (1) 4 (2 per answer)quadratic

(2) 2x2 + 5x - 3 = 0

•   An equation in which the highest power of the variable is one, is called a linear equation.

•   An equation in which the highest power of the variable is two, is called a quadratic equation.

•   An equation in which the highest power of the variable is three, is called a cubic equation.
This equation has 2 as its highest power, therefore the equation is a quadratic equation.

Standard form for a quadratic equation is   ax2 + bx + c = 0.
The first step is to collect all terms on one side, with zero on the other side:
                                                              3 - 2x2 - 5x = 0

The next step is to arrange the terms in descending powers of x: 
                                                              - 2x2 - 5x + 3 = 0
This answer is acceptable for standard form, but it is not one of the options given.
Multiply every term through by -1:                2x2 + 5x - 3 = 0

Explanation:

11. (1) 8-3 ≤≤≤≤ x ≤≤≤≤ 0

(2)  -4 ≤≤≤≤ x ≤≤≤≤ 1

(3) x ≤≤≤≤ -3

1.                                                      x(x + 3) ≤≤≤≤ 0

If we substitute a number less than -3 into the given inequality, the product of the two brackets will be 
positive.
If we substitute a number between -3 and 0 into the given inequality, the product of the two brackets will 
be negative.
If we substitute a number greater than 0 into the given inequality, the product of the two brackets will 
again be positive.

The product of the two brackets must be negative or zero; hence the solution is -3 ≤≤≤≤ x ≤≤≤≤ 0.

2.                                          x(x + 3) ≤≤≤≤ 4

                                        x2 + 3x - 4 ≤≤≤≤ 0            Standard form (zero on one side)

                                     (x + 4)(x - 1) ≤≤≤≤ 0            Factorise

Explanation:
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If we substitute a number less than -4 into the given inequality, the product of the two brackets will be 
positive.
If we substitute a number between -4 and 1 into the given inequality, the product of the two brackets will 
be negative.
If we substitute a number greater than 1 into the given inequality, the product of the two brackets will 
again be positive.

The product of the two brackets must be negative or zero; hence the solution is -4 ≤≤≤≤ x ≤≤≤≤ 1.

3.                                      x2(x + 3) ≤≤≤≤ 0
  x2 is always positive or zero, as it is a perfect square.
  That means that for a product in the given inequality that is negative or zero, the second bracket must be 
negative or zero.

                                             (x + 3) ≤≤≤≤ 0

                                                    x ≤≤≤≤ -3

12. (1) 25

(2) - 1

Write the equation in the form   :

        

Then :     ,     and  

But you could divide the equation by   :

   

Then :     ,     and  
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Explanation:

13. (1) 6± 3

(2) ± 5

(3) ± 4

The solution of px2 + qx + r = 0 will be:

2
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x
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But it is given that ,
5 25 4(12)

6
x
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====

which could also be written as  or as .
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x x
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Explanation:
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first term of the discriminant :  

   

second term of the discriminant :

     r

2
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p
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∴ =∴ =∴ =∴ =

If q = - 5:
Then the first term of the numerator will be:  - q = 5

This will give the option .
5 25 4(12)

6
x

± −± −± −± −
====

Therefore, the denominator must be equal to 6:

                             

2 6

3

p

p

====

====

and together with the second term of the discriminant:
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r

r
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Therefore, p = 3;  q = -5;  r = 4.

If q = 5:
Then the first term of the numerator will be:  - b = - 5

This will give the option .
5 25 4(12)

6
x

− ± −− ± −− ± −− ± −
====

−−−−

Therefore, the denominator must be equal to -6:
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3

p
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and together with the second term of the discriminant:
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Therefore, p = - 3;  q = 5;  r = - 4.

All the possible values of the unknowns are therefore p = ± 3, q = ± 5 and r = ± 4.

14. 0; 2
0 ; 2
2; 0
2 ; 0
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    or    
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Explanation:
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15. -1 < x < -½
-1 < x < -0.5
-1 < x < -0,5
-½ > x > -1
-0.5 > x > -1
-0,5 > x > -1

5

  (2x - 1)(x + 2) < -3
     2x2 + 3x - 2 < -3                remove brackets, as zero is not on one side
    2x2 + 3x + 1 < 0                 standard form (zero on one side)
 (2x + 1)(x + 1) < 0                 factorise

If we substitute a number less than -1 into the given inequality, the product of the two brackets will be 
positive.
If we substitute a number between -1 and -½ into the given inequality, the product of the two brackets will 
be negative.
If we substitute a number greater than -½ into the given inequality, the product of the two brackets will 
again be positive.
The product of the two brackets must be negative; hence the solution is -1 < x < -½.

Explanation:
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