<u>Electricity Memo – Form 5</u>

1.1.1	slip rings $\sqrt{-}$ to make an electrical $\sqrt{-}$ connection to the brushes or external circuit (2)	
1.1.2	The induced current increases $\sqrt{\ }$ with the rate of change $\sqrt{\ }$ of magnetic $\sqrt{\ }$ flux linka (3)	ge.
1.1.3	clockwise (1)	
1.1.4	The amount of energy lost $$ due to heating effect $$ is less at low current (2)	
1.2.1	(5)	
\checkmark	cos graph (if they do sine graph but have period correct 3/5) ✓ axes labelled ✓ two x- intercepts marked	
1.2.2	P = W/t	
	$6000 = W/(20x 60) \sqrt{(conv. mins to secs)}$	
	W = 6000 x 1200	
	$= 7200000 \text{ J} (7200 \text{ kJ}) \sqrt{3}$	
1.3	Wind power is a renewable resource (environmental '+')	
	It also produces no greenhouse gases (enviro '+')	
	It is expensive to build (economic '-')	
	No fuel required (wind free) (economic '+')	
	Only work when there is wind ('-')	(4)

- 2.1 D
- 2.2 Downwards
- 2.3 Increase strength of mag held of magnets / any 3
 increase current
 add more coils of usine
 Keep held I to coil (coil magnets)
 (3)
- 2.4

 (coil is mounted so that it is free to relate.

 The two magnetic helds combine reinforcing in some regions, cancelling in others.

 This causes a terribing force.

 After a revolution the current direction in the coil is reversed This is done with The aid of the speet ring commutator.

 This alows for the coil to retate for 180°

 (4) well ordered facts.
- 2.5 Upwards
- 2.7 Electrical energy → mechanical energy
- and the split ring with the carbon brushes
 There is friction which could result in
 huat and sound energy (3)

- 3.1 B
- Ac = alternating dranges direction
 all the time XX

 DC = direct current charges move

 The same direction all the time XX

 (1)
- 3.3 Add a commutator
- 3.4 It will turn a paddle wheel (fast flowing water) connected to the armature coil so that it rotates inside a magnetic field.
- 3.6 Clockwise
- 4.1 A
- 4.2 A semiconductor doped with excess electrons
- 4.3 B1
- 4.4
- a) reg vortage = reverse bias, diod doconct conduct
- b) 20 m/dc) correct

 direction

 for T R = T 0,02 0,02 0,02 0,02 0,02 0,02

(z)

4.5 LED-made from either gallium arsenide er gallium phosphide, energy produced when (2) and holes combine given do in form of light ow V > not based on heating effect

au V > not based on heating effect

au V > not based on chemical used in doping

5.1	Electric energy is converted to (rotational) mechanical energy. $\checkmark\checkmark$	(2)	
5.2	A DC motor reverses current direction whenever the coil is in the vertical position to ensure continuous rotation.		
	An AC motor, with alternating current as input, works without commutators since the current alternates. 🗸 🗸	(4)	
5.3	(a) Clockwise ✓	(1)	
	(b) Fleming's left hand motor rule ✓	(1)	
	(c) Its own momentum ✓✓	(2)	[10]
QUES	TION 6	-	-
6.1	In an ordinary light bulb, the filament becomes so hot that it glows. Only a small percentage of the energy is converted into visible light. More than 90% of the energy is transformed into heat energy. ✓		
	In a fluorescent light bulb, electrons strike the gas in the tube and cause them to be excited. \checkmark		
	When the excited atoms jump back to their normal levels, they emit UV photons that strike the fluorescent coating on the inside of the tube, causing it to fluoresce.		
	More than 80% of energy is converted to visible light. ✓	(4)	
6.2	Geyser blankets insulate the geyser, significantly reducing the loss of heat energy. ✓✓	(2)	
6.3	Boil water in a kettle and then store the boiled water in a flask. ✓		
	Avoid excessive use of electrical appliances that have heaters, e.g. tumble dryers, dishwashers, washing machines, etc. \checkmark	(2)	
6.4	Pros: consumers to convert to gas stoves; energy savings; efficient use of diminishing natural resources.		
	Cons: price of gas increased; lower-income earners spend even more money; no infrastructure to allow gas to be piped to homes. ✓✓	(4)	[12]
QUES	TION 7		
7.1	Current has a heating effect. Water removes excess heat caused by current. ✓✓	(2)	

Resistance decreases, allowing more efficient transmission of power. 🗸 🗸

(2)

7.2

7.3	It is wasted; dissipated in the earth, which is environmentally unsound. ✓✓	(2)	
7.4	Use AC current. The voltage is stepped up and the current is stepped down using a transformer. $\checkmark\checkmark$	(2)	
7.5	Low installation costs; cheaper to run since air can act as the coolant. ✓✓	(2)	
7.6	Pylons take up lots of space; they are potentially dangerous because the wind can blow them against buildings. 🗸 🗸	(2)	
7.7	Variation in the sun's radiation results in variable power supply − not conducive for required steady supply of electricity. Increasing the number of solar panels is not always economic. ✓✓		
	Insufficient land where wind blows constantly to generate electricity in significant quantities. Also less cost-effective at this stage.	(4)	[16]

8.1
$$\frac{1}{R}$$
 = $\frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}$ 3 (method)
R = $\frac{5}{15}$ 3 substituting
= $\frac{5}{15}$ 3 R = $\frac{3,0 \Omega}{15}$ 3 accuracy (-1 no units) (4)
8.2 P = $\frac{V^2}{R}$ 3 method (may calculate I = 4 A, the P=VI = 48W)
= $\frac{(12)^2}{8}$ 3 substitution
3 3 correct value of R (c.o.e)
= $\frac{48 \text{ W}(\text{J.s}^{-1})}{1000 \text{ Journey}}$ 3 accuracy (-1 no units) (4)

- 8.3 Lesser;3 the effective resistance will increase 33therefore power will decrease also as can be seen by using the equation $P = V^2 / R$ 3 (4)
- 8.4 New resistance = 15/3 = 5Ω 3 New power = 144/5 = 28,8 W3 New power = 0,6 3 Power

 Therefore power decreases by a factor of 0,4 (or 2/5)3 (4)

8.5 E = I(R + r) 3(method)
123 = I (3 + 2,5) 3(substitutions)
I =
$$\underline{2,18 \text{ A}}$$
 3(accuracy; -1 no units) (4)

[20]

9.1	The power per unit current $\sqrt{}$ supplied by the cell is 1,10 watts per ampere $$
	OR
	The total amount of energy supplied by the cell per coulomb of charge passing through it $$ is 1,10 joules per coulomb $$
9.2	$Emf = I (R + r) \sqrt{}$
	1,103 = 0,0025 (3,0 + r)
	$r = 1,093 \Omega (1,0925) $
9.3	Effective resistance√ of two light bulbs
	= 3,0/2 3= 1,5 Ω√

	OR
	I/R = 1/3 + 1/3
	= 2/33
	therefore R = 3/2 = 1,5 Ω
	Emf = I (R + r)
	1,10 $\sqrt{=}$ I (1,5 + 1,0925) $\sqrt{-}$
	I = 0.424 A
9.4.1	1,10 V
9.4.2	Effective resistance = $1,0925/4$
	= 0,273 Ω
	OR
	1/R = 1/1.0925 + 1/10925 + 1/1.0925 √
	= 4/1.0925
	therefore R = 1.0925/4 = 0,273 $\Omega $
9.5	The reading will increase√
	The internal resistance of the cell will decrease $\sqrt{\text{because there is a greater}}$ surface area of zinc exposed and able to take part in reactions $$

10.1	Potential difference: the amount of energy transferred per unit positive3
	test3 <u>charge</u> 3 placed in an electric field.
10.2	Using R = V/I3
	Substituting V = 4,09 V3
	Substituting I = 0,082 A3
	$R = 50 \Omega 3$
10.3	Two resistors in series = 2 R3
	Parallel combination of R and 2R
	Using 1/R etc OR product/sum 3
	Correct substitutions 33
	Each resistor has resistance of 75 Ω 3
10.4	Emf = 3 × 1,5 V3=4,5 V3
10.5	Emf = IR + Ir3
	4,53= 4,09 3 + (0.82)3r
	$r = 5 \Omega 3$
	Each cell has average value of 5/3 = 1,67 Ω 3